




FINAL ENVIRONMENTAL IMPACT REPORT FOR THE

# Apple Valley I-15 Travel Center

State Clearinghouse No. 2021120062

Prepared for:



Town of Apple Valley 14955 Dale Evans Parkway Apple Valley, CA 92307

June 2023

FINAL ENVIRONMENTAL IMPACT REPORT FOR THE

# Apple Valley I-15 Travel Center

State Clearinghouse No. 2021120062

Prepared for:



Town of Apple Valley 14955 Dale Evans Parkway Apple Valley, CA 92307 Contact:

Daniel Alcayaga Planning Manager

Prepared by:



Ascent Environmental 455 Capitol Mall, Suite 300 Sacramento, CA 95814

June 2023

# TABLE OF CONTENTS

| Sectio | n      |                                                                            | Page |
|--------|--------|----------------------------------------------------------------------------|------|
| 1      | INTRO  |                                                                            | 1-3  |
|        | 1.1    | Purpose and Intended Uses of this Final EIR                                | 1-3  |
|        | 1.2    | Project Location<br>Project Objectives                                     | 1-3  |
|        | 1.3    | Project Objectives                                                         | 1-7  |
|        | 1.4    | Summary Description of the Project                                         | 1-7  |
|        | 1.5    | Major Conclusions of the Environmental Analysis                            |      |
|        | 1.6    | CEQA Public Review Process                                                 | 1-9  |
|        | 1.7    | Organization of the Final EIR                                              | 1-10 |
| 2      | RESP   | ONSES TO COMMENTS                                                          | 2-1  |
|        | 2.1    | List of Commenters on the Draft EIR                                        | 2-1  |
|        | 2.2    | Comments and Responses                                                     |      |
| 3      | REVIS  | SIONS TO THE DRAFT EIR                                                     | 3-1  |
|        | 3.1    | Revision to Appendix B, "Air Quality, Greenhouse Gas, and Energy Modeling" |      |
| 4      | REFE   | RENCES                                                                     | 4-1  |
| 5      | LIST ( | OF PREPARERS                                                               | 5-1  |

## Appendices

| A | Revisions to Appendix B of the Draft EIR |
|---|------------------------------------------|

## Figures

| Figure 1-1 | Regional Location    | 1-4 |
|------------|----------------------|-----|
| Figure 1-2 | Project Vicinity     | 1-5 |
| Figure 1-3 | Water Main Extension | 1-6 |

## Tables

| Table 1-1 | Summary of Proposed Land Uses1 | -8  |
|-----------|--------------------------------|-----|
| Table 2-1 | List of Commenters             | !-1 |

# LIST OF ABBREVIATIONS

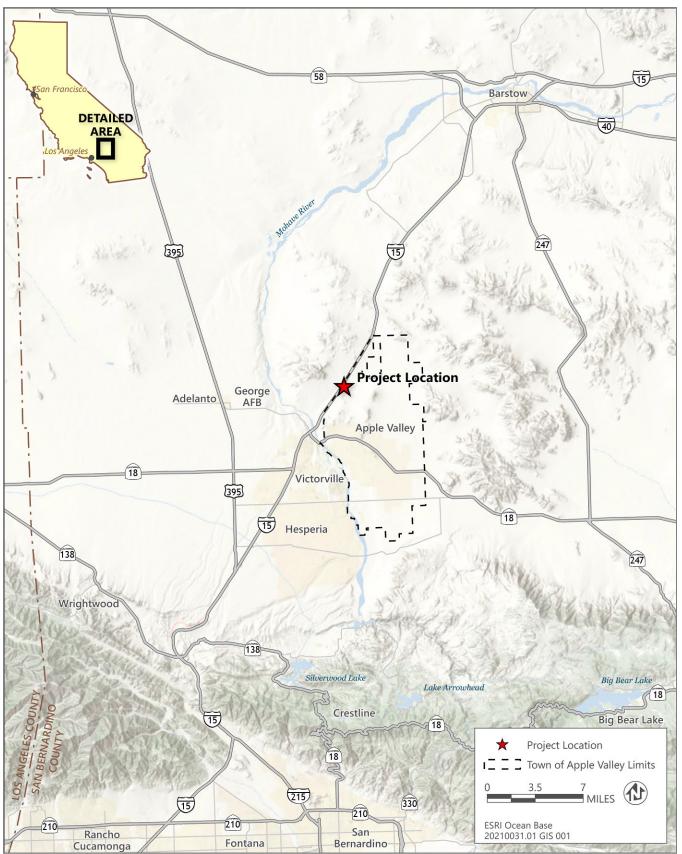
| BMP       | best management practice                |
|-----------|-----------------------------------------|
| CCR       | California Code of Regulations          |
| CEQA      | California Environmental Quality Act    |
| draft EIR | draft environmental impact report       |
| Final EIR | final environmental impact report       |
| I         | Interstate                              |
| LID       | low impact development                  |
| project   | Apple Valley I-15 Travel Center Project |
| RV        | recreational vehicle                    |
| RWQCB     | Regional Water Quality Control Board    |
| Town      | Town of Apple Valley                    |
| WQMP      | water quality management plan           |

# 1 INTRODUCTION

This final environmental impact report (Final EIR) has been prepared by the Town of Apple Valley (Town), as lead agency, in accordance with the requirements of the California Environmental Quality Act (CEQA) and the State CEQA Guidelines (CCR, Title 14, Section 15132). This Final EIR contains responses to comments received on the draft environmental impact report (draft EIR) for the Apple Valley I-15 Travel Center Project (project). The Final EIR consists of the Draft EIR and this document (response to comments document), which includes comments on the Draft EIR, responses to those comments, and revisions to the Draft EIR.

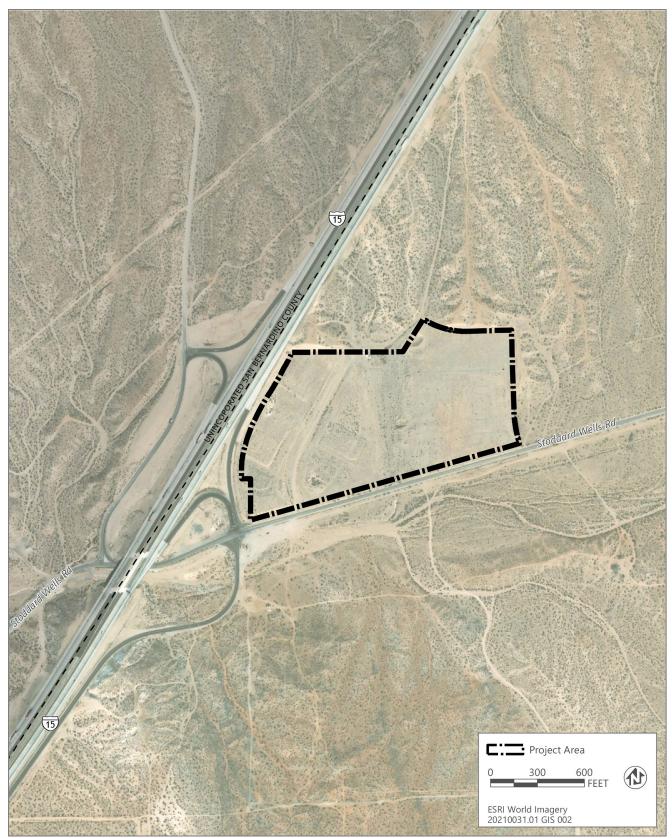
# 1.1 PURPOSE AND INTENDED USES OF THIS FINAL EIR

CEQA requires a lead agency that has prepared a Draft EIR to consult with and obtain comments from responsible agencies; trustee agencies; and any other state, federal, and local agencies that have jurisdiction by law with respect to the project, or that exercise authority over resources that may be affected by the project, and to provide the public with an opportunity to comment on the Draft EIR. The Final EIR is the mechanism for responding to these comments. This Final EIR has been prepared to respond to comments received on the Draft EIR, which are reproduced in this document; and to present corrections, revisions, and other clarifications and amplifications to the Draft EIR, including project updates, made in response to these comments and as a result of the applicant's ongoing planning and design efforts. The Final EIR will be used to support the Town's decision regarding whether to approve the project.


This Final EIR will also be used by CEQA responsible agencies to ensure that they have met their requirements under CEQA before deciding whether to approve or permit project elements over which they have jurisdiction. It may also be used by other state, regional, and local agencies that may have an interest in resources that could be affected by the project or that have jurisdiction over portions of the project.

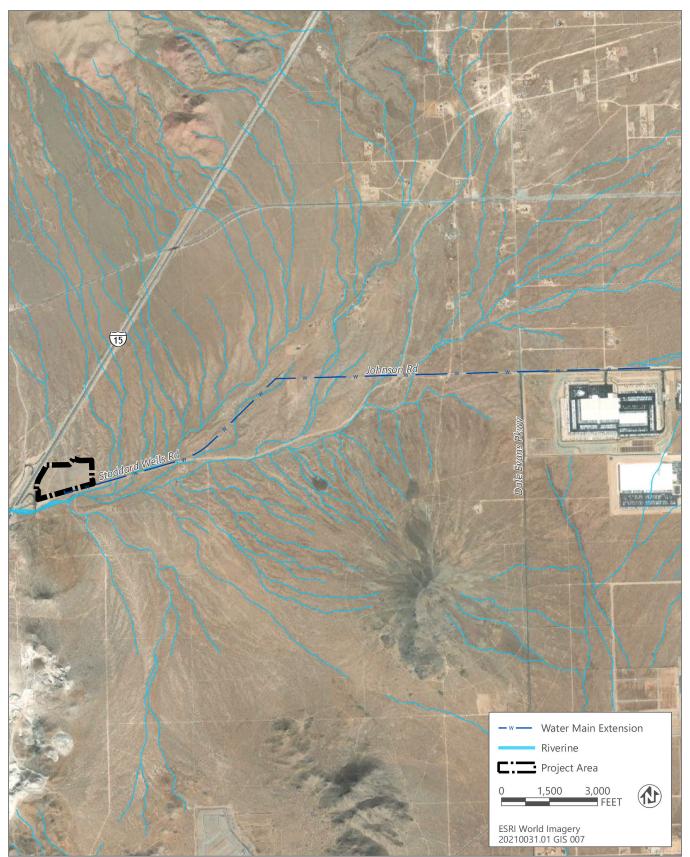
Responsible, trustee, and interested agencies may include:

- California Department of Transportation
- ► Lahontan Regional Water Quality Control Board (Region 6)
- ► Mojave Desert Air Quality Management District


# 1.2 PROJECT LOCATION

The project site consists of a 33.52-acre parcel (Assessor's Parcel Number 0472-222-10-0000), located northeast of the interchange between Interstate 15 (I-15) and Stoddard Wells Road (Figure 1-1 and 1-2). The site is bounded to the north and east by vacant land, to the west by I-15, and to the south by Stoddard Wells Road. Off-site improvements would include construction of a water main line, extending 3.5 miles northeast of the project site within the roadway right-of-way of Stoddard Wells Road and Johnson Road (Figure 1-3).




Source: Data downloaded from Western Riverside County Regional Conservation Authority in 2020 and adapted by Ascent Environmental in 2020,

## Figure 1-1 Regional Location



Source: adapted by Ascent Environmental in 2021,

## Figure 1-2 Project Vicinity



Source: data downloaded from NWI in 2020 and adapted by Ascent Environmental in 2021.

## Figure 1-3 Water Main Extension

# 1.3 PROJECT OBJECTIVES

The underlying purpose of the project is to develop a regional travel center and related commercial land uses on Regional Commercial (C-R)-designated land within the Town of Apple Valley that is consistent with Town General Plan policies and zoning. A subdivision map is proposed to create the 33.52-acre project parcel. This underlying purpose, in turn, gives rise to the following project objectives:

- Create a high-quality travel center commercial development along Interstate (I)-15, a major interstate transportation corridor.
- Develop a property of sufficient size to create a regional travel center that would accommodate a truck and auto fuel dispensing area, convenience store, fast-food restaurant, truck parking and maintenance services, recreational vehicle (RV) park, and recreational amenities.
- Construct a travel center facility near a major freeway onramp/offramp to minimize truck and automobile movements, vehicle miles traveled, and associated air pollutant and greenhouse gas emissions and traffic noise on local streets.
- Assist the Town of Apple Valley with meeting its economic development goals, as set forth in its General Plan.
- Maximize tax revenue to the Town of Apple Valley.
- ▶ Provide employment opportunities for residents of Apple Valley and surrounding areas.
- Construct a facility with proximal access to adequate existing or anticipated utility infrastructure to support planned operations.
- Provide minimal stay, full-service RV accommodations for the public traveling to and from destinations along Interstate 15 and Stoddard Wells Road.

# 1.4 SUMMARY DESCRIPTION OF THE PROJECT

The applicant is proposing to construct and operate a full-service travel center and recreational vehicle (RV) park on approximately 33.52 acres of vacant land in the northwest portion of the Town of Apple Valley (project site). On the western portion of the project site, the travel center would provide professional truck drivers and motorists with 24-hour access to purchase gasoline, diesel fuel, propane, electronics, snacks, travel items, and fast-food restaurant offerings. A truck maintenance building, dog park, RV dump station, stormwater basins, truck and automobile parking areas and landscaping/lighting are also proposed. The eastern portion of the project site would include an RV park, which would consist of a convenience store, automobile and overnight RV parking with utility hookups, propane fueling area, recreational amenities, and landscaping/lighting. The project would include construction of Traveler's Way, a new roadway that would bisect the travel center in the western portion of the project site and the RV park in the eastern portion of the project site. Project visitors/customers would include "over-the-road" trucks (i.e., professional long-haul drivers who are on the road for consecutive days or weeks at a time), local residents, and traveling motorists.

Primary site access would be provided via a proposed roadway (Traveler's Way) connecting to Stoddard Wells Road. Access to the travel center facility would be using three ingress/egress driveways along the proposed Traveler's Way. The southern driveway (40 feet wide) along Traveler's Way would be for the exclusive use of automobiles while the two northern driveways (60 feet wide) would be for trucks only. Access to the RV park would be provided via one ingress/egress drive (40 feet wide) along the proposed Traveler's Way.

The travel center on the western portion of the project site would include the following characteristics and design features:

- an 8-position passenger vehicle fueling station;
- a 10-position truck fueling station;
- an electric vehicle charging station;
- ► a 9,659 square-foot (SF) convenience store;
- ► a 3,043 fast food restaurant;
- a 13,786 SF truck maintenance building with 80kilowatt direct current rooftop solar system;
- up to two transformers (approximately 150 to 300 kilo-volt-amperes);
- ► a dog park;
- ► a truck scale;
- ▶ an RV dump station;
- ▶ a 1,000-gallon propane tank;
- eight 12,000-gallon above-ground and below ground diesel storage tanks, including fuel delivery parking;

- one 30,000-gallon below ground gasoline storage tank, including fuel delivery parking;
- one two-compartment combined high octane gasoline/diesel tank;
- one 20,000-gallon diesel exhaust fluid storage tank;
- truck (102 spaces) and automobile (81 spaces) parking – 183 total parking spaces;
- onsite lighting, consisting of high-mast LED fixtures and LED canopy lighting;
- high-rise freeway oriented signage, street signage, and other directional signage;
- ▶ landscaping, hardscaping, pavement, and fencing;
- a 200,000-gallon fire water supply storage tank; and
- five stormwater quality basins/features

The RV park on the eastern portion of the project site would include the following characteristics and design features:

- a 3,250 SF main building with a convenience store, laundry room, bathrooms, and showers;
- automobile (8 spaces) and overnight RV (80 spaces) parking with utility hookups – 88 total parking spaces;
- a 1,000-gallon propane tank;
- ▶ an 80,000 SF bioretention area;

- recreational amenities, including pergolas/gazebos, cornhole courts, pickleball courts, splash pad, horseshoe courts, shuffleboard courts, basketball court, dog park, picnic tables, fire pits, and walking paths;
- onsite lighting, consisting of high-mast LED fixtures and LED canopy lighting; and
- ► landscaping, hardscaping, pavement, and fencing.

Table 1-1 provides a summary of the proposed land uses.

Table 1-1 Summary of Proposed Land Uses

|                                        | Floor Area (Cruces Foot | Parking |       |              |  |
|----------------------------------------|-------------------------|---------|-------|--------------|--|
|                                        | Floor Area/Square Feet  | Auto    | Truck | Overnight RV |  |
| Travel Center                          |                         |         |       |              |  |
| Convenience Store                      | 9,659                   | 42      | 58    |              |  |
| Fast-Food Restaurant (w/drive-through) | 3,043                   | 39      | 32    |              |  |
| Truck Maintenance/Tire Building        | 13,786                  |         | 12    |              |  |
| Pavement/Parking                       | 350,000                 |         |       |              |  |
| RV Park                                |                         |         |       |              |  |
| Main Building                          | 3,250                   | 8       |       |              |  |
| Pavement/Parking                       | 786,000                 |         |       | 80           |  |
| Total                                  | 1,165,738               | 89      | 102   | 80           |  |

Source: Information provided by project applicant and compiled by Ascent Environmental in 2021.

The proposed travel center and RV park would be open 24 hours per day, 7 days per week. The travel center is designed to accommodate up to 102 trucks and 81 cars onsite at any given time and the RV park is anticipated to accommodate parking of up to 8 cars and 80 RVs onsite at any given time. Overnight truck parking would be available; however, idling of trucks would be limited to no more than five minutes, consistent with California Air Resources Board and Mojave Desert Air Quality Management District requirements.

In terms of employment, approximately 39 employees would be located at the project site, spread over three daily shifts. It is anticipated that up to 12 employees would be located at the travel center and 3 employees would be located at the RV park at one time. The travel stop would receive up to six (6) fuel deliveries per day. Up to three (3) small deliveries, such as those delivered by UPS or FedEx are also expected to occur. While the restaurant would likely receive one (1) delivery truck per week, a total of one (1) delivery per day would be the maximum. Diesel fuel, gasoline, and diesel exhaust fluid would be stored onsite in above-ground storage tanks. Total annual fuel throughput for the travel stop is planned to be 14,000,000 gallons (diesel fuel and gasoline).

Water and sewer service would be provided by a public utility through connections to existing main lines within and adjacent to the project site. During operation, the travel stop would have an estimated water demand of approximately 26,000 gallons per day (gpd) or 30 acre-feet per year. There are no existing offsite water mains on Stoddard Wells Road fronting the proposed project site. The nearest existing water main connection is approximately 3.5 miles northeast of the project site along Johnson Road, approximately 4,100 feet east of Dale Evans Parkway. The project would require extension of the exiting 16-inch diameter pipeline for approximately 19,460 linear feet within existing disturbed areas, such as within the north shoulders or pavement of Johnson Road and Stoddard Wells Road (see Figure 2).

Stormwater from the travel center would be drained toward five (5) onsite bioretention facilities. From the onsite retention basins, stormwater would flow through a new underground stormwater pipe that would discharge to existing drainage south of the project site. Stormwater from the RV park would be drained toward a bioretention basin along Stoddard Wells Road, just south of the parking area.

# 1.5 MAJOR CONCLUSIONS OF THE ENVIRONMENTAL ANALYSIS

The Draft EIR identified significant or potentially significant effects associated with cultural resources, biological resources, energy, greenhouse gas emissions, hazards and hazardous materials, noise, transportation, and utilities and service systems. Most of the significant or potentially significant impacts from the project can be reduced to a less-than-significant level through mitigation; however, the potential to expose existing sensitive receptors to short-term construction noise from construction of the off-site water main line would remain significant and unavoidable.

# 1.6 CEQA PUBLIC REVIEW PROCESS

On February 21, 2023, the Town released the Draft EIR for a 45-day public review and comment period. The Draft EIR was submitted to the State Clearinghouse for distribution to reviewing agencies; posted on the Town's website (https://www.applevalley.org/services/planning-division/environmental); and was made available for review at the following locations:

San Bernardino County Library 14901 Dale Evans Parkway Apple Valley, CA 92307 Apple Valley Town Hall 14955 Dale Evans Parkway Apple Valley, CA 92307

A notice of availability of the Draft EIR was published in the Apple Valley News and distributed by the Town to a project-specific mailing list of 53 agencies and interested parties.

As a result of these notification efforts, written comments were received from two agencies (San Bernardino County Department of Public Works and Lahontan Regional Water Quality Control Board) on the content of the Draft EIR. Chapter 3, "Responses to Comments," identifies these commenting parties, their respective comments, and responses

to these comments. None of the comments received, or the responses provided, constitute "significant new information" by CEQA standards (State CEQA Guidelines CCR, Title 14, Section 15088.5).

## 1.7 ORGANIZATION OF THE FINAL EIR

This Final EIR is organized as follows:

**Chapter 1, "Introduction,"** describes the purpose of the Final EIR, summarizes the project and the major conclusions of the Draft EIR, provides an overview of the CEQA public review process, and describes the content of the Final EIR.

Chapter 2, "Responses to Comments," contains a list of all parties who submitted comments on the Draft EIR during the public review period, copies of the comment letters received, and responses to the comments.

Chapter 3, "Revisions to the Draft EIR," presents a revision to the Draft EIR made to correct an error that was identified subsequent to the release of the Draft EIR. No other revisions to the Draft EIR were necessary in response to public comments.

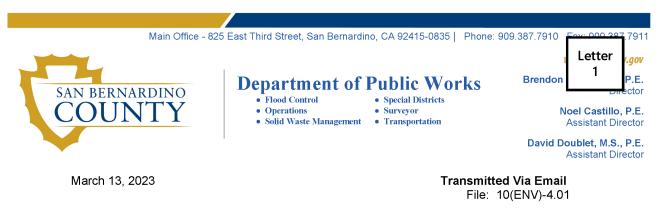
Chapter 4, "References," identifies the documents used as sources for the analysis.

Chapter 5, "List of Preparers," identifies the lead agency contacts as well as the preparers of this Final EIR.

# 2 RESPONSES TO COMMENTS

This chapter contains comment letters received during the public review period for the Draft EIR, which concluded on April 6, 2023. In conformance with Section 15088(a) of the State CEQA Guidelines, written responses were prepared addressing comments on environmental issues received from reviewers of the Draft EIR.

# 2.1 LIST OF COMMENTERS ON THE DRAFT EIR


A total of two letters containing comments on the Draft EIR were received from public agencies. No comments were received from members of the public or from nongovernmental organizations. Table 2-1 presents the list of commenters, including the numerical designation for each comment letter received, the author of the comment letter, and the date of the comment letter. The comment letters are presented in the order in which they were received.

| Letter No. Commenting Agency |                                                                                                                                | Date          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1                            | 1 San Bernardino County Department of Public Works<br>Nancy Sansonetti, Supervising Planner, Environmental Management Division |               |
| 2                            | Lahontan Regional Water Quality Control Board<br>Tiffany Steinert, Engineering Geologist                                       | April 5, 2023 |

Table 2-1List of Commenters

# 2.2 COMMENTS AND RESPONSES

Written comments received on the Draft EIR and the responses to those comments are provided below. The comment letters are reproduced in their entirety and are followed by the responses. Where a comment letter contains multiple comments, each individual comment is indicated by a line bracket and an identifying number in the margin of the comment letter corresponding to the response.



Town of Apple Valley Attn: Daniel Alcayaga, Planning Manager 14955 Dale Evans Parkway Apple Valley, CA 92307 dalcayaga@applevalley.org

#### RE: OUTSIDE ENVIRONMENTAL REVIEW: NOTICE OF AVAILABILITY OF A DRAFT ENVIROMENTAL IMPACT REPORT (EIR) FOR THE PROPOSED APPLE VALLEY I-15 TRAVEL CENTER

Dear Town of Apple Valley:

Thank you for allowing the San Bernardino County Department of Public Works the opportunity to comment on the above-referenced project. **We received this request on February 24, 2023** and pursuant to our review, we have the following comments for your consideration and inclusion into public record:

1-1

1-2

1-3

#### NPDES Division (Jonathan Dillon, P.E. 909-387-8119):

 In compliance with the Municipal separate storm sewer system (MS4) Permit, a Water Quality Management Plan (WQMP) should be prepared for the proposed project. Impacts associated with the development and implementation of the WQMP, and any proposed mitigation should be discussed within the EIR prior to adoption and certification. If you have any questions regarding this process, please contact the FCD Permit Section at (909) 387-1863

We respectfully request to be included on the circulation list for all project notices, public reviews, or public hearings. In closing, I would like to thank you again for allowing the San Bernardino County Department of Public Works the opportunity to comment on the above-referenced project. Should you have any questions or need additional clarification, please contact the individuals who provided the specific comment, as listed above.

Sincerely, Nancy Sansonetti

Nancy Sansonetti Supervising Planner Environmental Management Division



## Letter 1 San Bernardino County Department of Public Works

Nancy Sansonetti, Supervising Planner, Environmental Management Division March 13, 2023

- 1-1 The comment provides introductory remarks. This comment is not related to the adequacy of the CEQA document. No further response is required.
- 1-2 This comment states that a water quality management plan (WQMP) should be prepared for the project and associated impacts and mitigation measures identified in the WQMP should be addressed in the EIR. The comment provides contact information for the San Bernardino County Flood Control District Permit Section.

As described on page 3.9-3 of the Draft EIR, the Town of Apple Valley (Town) is covered under National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000004, also referred to as the Phase II Small Municipal Separate Storm Sewer System (MS4) General Permit, issued by the State Water Resources Control Board. The Phase II MS4 Permit requires the Town to impose requirements on new development and redevelopment projects to implement post-construction best management practices (BMPs) to mitigate potential adverse impacts to water quality and downstream channels. To implement Phase II MS4 Permit provisions for post-construction BMPs, the Town requires development projects that create or replace greater than 5,000 square feet of impervious surface areas to prepare a Regulated (Priority) Project WQMP. The WQMP is a contract with the Town, which describes the project and identifies all post-construction BMPs that will be implemented to minimize the discharge of pollutants and excess stormwater runoff. The WQMP also requires an operation and maintenance plan and an executed and recorded Maintenance Agreement to ensure long-term BMP performance.

CEQA does not require the preparation or inclusion of design level studies in a project EIR if other information is available to sufficiently address impacts; to do so would obligate project proponents to unreasonable financial commitments in advance of project approvals. In this case, a mandatory permitting process ensures that adverse impacts related to water quality and hydrology are avoided and minimized. The Town of Apple Valley will require a Regulated (Priority) Project WQMP to be submitted concurrent with grading and building permits for the project. The WQMP will be prepared and implemented in accordance with the Town requirements and is expected to include the operational water quality BMPs that are already considered in the project design and are described on page 3.9-11 of the Draft EIR.

As discussed on page 3.9-12 of the Draft EIR, a Hydrology Report (Lane Engineers, Inc. 2022) was prepared for the project and was included as Appendix F to the Draft EIR. The report discusses bioretention basins, which have been included in the project design, that would decrease the volume of stormwater runoff and peak discharge from the existing pre-development condition. As the Draft EIR noted on page 3.9-11, moreover, these basins would also provide water quality benefits: "[b]ioretention systems are designed to function in a similar manner as the physical, chemical, and biological processes in the natural environment. They capture runoff, promote infiltration and evapotranspiration, recharge groundwater, and remove up to 99 percent of the nutrients, sediment, and heavy metals carried in stormwater (Ahiablame et al. 2012)." The project also includes other design features to protect water quality. As the Draft EIR explains on page 3.9-11, "[t]he project includes operational water quality BMPs that would reduce the potential for pollutant discharge. All fueling and delivery areas would be surfaced with Portland cement concrete. Fueling bays would be covered by a canopy and would have a hydrologically isolated drainage system that discharges to an oil/water separator. The truck maintenance facility would also be enclosed and would include a similar drainage system. The travel center's eight above-ground storage tanks would include a concrete containment curb which would catch and retain fuel in the event of a fuel spill."

The Town Engineering Department additionally required that the post-development runoff would not exceed the pre-development runoff at any time. The bioretention basins would capture and store a sufficient amount of water to comply with the Phase II MS4 Permit and all of the stormwater requirements in the Town's Municipal Code.

Implementation of project design features and compliance with regulatory and permit processes would ensure that project impacts on water quality would be less than significant. As such, no mitigation is required and no revisions to the Draft EIR are required in response to this comment.

1-3 The comment requests that the agency be included in the circulation list for all project notices, public reviews, or public hearings and provides closing remarks. This comment is noted and San Bernardino County Department of Public Works has been added to the project distribution list. This comment is not related to the adequacy of the CEQA document. No further response is required.

2-1

2-2





April 5, 2023

File: Environmental Doc Review San Bernardino County

Daniel Alcayaga Town of Apple Valley 14955 Dale Evans Parkway Apple Valley, CA 92307 dalcayaga@applevalley.org

## Comments on Draft Environmental Impact Report for the Apple Valley I-15 Travel Center, State Clearinghouse No. 2021120062

Lahontan Regional Water Quality Control Board (Water Board) staff received the Apple Valley I-15 Travel Center Draft Environmental Impact Report (DEIR) on February 21, 2023. The DEIR was prepared by Ascent Environmental for the Town of Apple Valley (City) and submitted in compliance with provisions of the California Environmental Quality Act (CEQA). Water Board staff, acting as a responsible agency, is providing these comments to specify the scope and content of the environmental information germane to our statutory responsibilities pursuant to CEQA Guidelines, California Code of Regulations (CCR), title 14, section 15096. We encourage the City to take this opportunity to integrate elements into the DEIR that: (1) promote watershed management; (2) support "Low Impact Development" (LID); and (3) reduce the effects of hydromodification. Our comments are outlined below.

#### WATER BOARD'S AUTHORITY

All groundwater and surface waters are considered waters of the State. Surface waters include streams, lakes, ponds, and wetlands, and may be ephemeral, intermittent, or perennial. All waters of the State are protected under California law. State law assigns responsibility for protection of water quality in the Lahontan Region to the Lahontan Water Board. Some waters of the State are also waters of the U.S. The Federal Clean Water Act (CWA) provides additional protection for those waters of the State that are also waters of the U.S.

The Water Quality Control Plan for the Lahontan Region (Basin Plan) contains policies that the Water Board uses with other laws and regulations to protect the quality of waters of the State within the Lahontan Region. The Basin Plan sets forth water quality standards for surface water and groundwater of the Region, which include designated beneficial uses as well as narrative and numerical objectives which must be maintained or attained to protect those uses. The Basin Plan can be accessed via the Water Board's web site at

Peter C. Pumphrey, chair | Michael R. Plaziak, pg, executive officer

2501 Lake Tahoe Blvd., So. Lake Tahoe, CA 96150 | 15095 Amargosa Rd., Bldg 2 - Suite 210, Victorville CA 92394 www.waterboards.ca.gov/lahontan

| Daniel                   | Alcayaga                                                                                                                                                                                                                                  | - 2 -                                                                                                                                           | April 5, 2023                                                                                                                                                                                                                                                                                                         |                                                 |              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|
| <u>http://\<br/>ml</u> . | www.waterboards.ca.gov/lahor                                                                                                                                                                                                              | <u>ntan/water_issues</u>                                                                                                                        | /programs/basin_plan/referenc                                                                                                                                                                                                                                                                                         | <u>ces.sht</u>                                  | 2-2<br>cont. |
| RECO                     | MMENDED ELEMENTS TO II                                                                                                                                                                                                                    | NCLUDE IN THE                                                                                                                                   | PLAN                                                                                                                                                                                                                                                                                                                  | T                                               | -            |
| We re                    | commend the following be con                                                                                                                                                                                                              | sidered in the env                                                                                                                              | vironmental review.                                                                                                                                                                                                                                                                                                   |                                                 |              |
| 1.                       | movement of water (i.e. infiltra<br>the delivery of organic materia                                                                                                                                                                       | rt ecosystems. W<br>ation and surface<br>al to surface wate                                                                                     | eds supply drinking water, prov<br>/atershed processes include th<br>runoff), the transport of sedimo<br>rs. These processes create ar<br>r receiving waters of our regior                                                                                                                                            | ne<br>ent, and<br>nd                            |              |
|                          | collaborative process that focu<br>problems within a drainage ba<br>Management Group has asse<br>public and private, to address<br>Upper Mojave River Valley grup<br>plans are being developed the<br>strategies continue to be developed | uses public and p<br>asin. The Mojave<br>embled a collabora<br>both water quant<br>oundwater basin.<br>rough that stakeho<br>eloped and refined | esource quality and quantity is<br>private efforts on the highest pri-<br>e Integrated Regional Water<br>ative group of stakeholders, bo-<br>tity and water quality issues wir<br>A number of water managem<br>older collaboration process, ar<br>d to sustain water quantity and<br>ality of groundwater and surface | iority<br>oth<br>thin the<br>nent<br>nd<br>I to | 2-3          |
| 2.                       |                                                                                                                                                                                                                                           | ining a landscape<br>onditions and mini<br>surface runoff an                                                                                    |                                                                                                                                                                                                                                                                                                                       | ource                                           |              |
|                          | <ul> <li>Maintaining natural dra<br/>runoff and maximize grander</li> </ul>                                                                                                                                                               |                                                                                                                                                 | landscape features to slow and<br>arge;                                                                                                                                                                                                                                                                               | d filter                                        |              |
|                          | <ul> <li>Reducing compacted a<br/>associated road netwo</li> </ul>                                                                                                                                                                        |                                                                                                                                                 | over created by development a                                                                                                                                                                                                                                                                                         | ind the                                         | 2-4          |
|                          | Managing runoff as clo                                                                                                                                                                                                                    | se to the source                                                                                                                                | as possible.                                                                                                                                                                                                                                                                                                          |                                                 |              |
|                          |                                                                                                                                                                                                                                           | nd maintenance c                                                                                                                                | ic values also reduce local<br>osts and benefit air quality, op<br>water management and infiltra                                                                                                                                                                                                                      |                                                 |              |
| 3.                       |                                                                                                                                                                                                                                           | o maintaining the<br>blems and will lim                                                                                                         | pre-development hydrograph v<br>nit the need for other analyses                                                                                                                                                                                                                                                       | will                                            | -<br>2-5     |

| Daniel A                                                      | Alcayaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 3 -                                                                                                                                                                                                                                                                                                                                                                                            | April 5, 2023                                                                                                                                                                                                                                                |              |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| c<br>p                                                        | water do not adequately protect t<br>of causes. Such practices have<br>permanently alter stream habitat,<br>degradation of a watershed.                                                                                                                                                                                                                                                                                                                                                                                                 | ed to channelization and stre                                                                                                                                                                                                                                                                                                                                                                    | eam armoring that                                                                                                                                                                                                                                            |              |
| t<br>F<br>c<br>v<br>r                                         | Storm water control measures th<br>raditional methods. Examples in<br>pavement, and vegetated infiltrat<br>construction storm water runoff, h<br>waters, and maintain healthy wat<br>measures may not be suitable, e<br>right combination, in the right pla                                                                                                                                                                                                                                                                             | nclude the use of bioretention<br>ion basins, all of which can e<br>help sustain watershed proce<br>ersheds. Any particular one<br>ffective, or even feasible in e                                                                                                                                                                                                                               | i swales, pervious<br>ffectively treat post-<br>esses, protect receiving<br>of these control<br>very instance, but the                                                                                                                                       | 2-5<br>cont. |
| (<br>a<br>v<br>v<br>s<br>c<br>c<br>r<br>r<br>r<br>r<br>r<br>r | Hydromodification is the alteratio<br>(i.e. lining channels, flow diversion<br>and compacting soils, changing of<br>mpervious surfaces, and altering<br>processes of absorption, infiltration<br>volume and frequency of runoff a<br>stream channel instability, degrad<br>processes, and aquatic habitat in<br>disconnecting a stream channel fi<br>recharge, attenuate flood flows, p<br>runoff. Floodplain areas also sto<br>processes to maintain the health<br>hydromodification can be access<br>http://www.swrcb.ca.gov/water_is | ons, culvert installations, armo<br>or removing the vegetation co<br>or drainage patterns limit the n<br>on, and evapotranspiration, a<br>und sediment transport. Hydr<br>ded water quality, changes in<br>npacts. Hydromodification al<br>from its floodplain. Floodplain<br>provide habitat, and filter pollu-<br>re and release sediment, one<br>of the watershed. Informatic<br>ed online at | oring, etc.). Disturbing<br>over, increasing<br>latural hydrologic cycle<br>and increases the<br>comodification results in<br>groundwater recharge<br>so can result in<br>n areas provide natural<br>utants from urban<br>e of the essential<br>on regarding | - 2-6        |
| a                                                             | Valley Groundwate<br>(MUN), Agricultura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vater quality objectives found<br>an assessment as to whether<br>rst identify the applicable wat<br>the Project area, within the<br>er Basin, Beneficial Uses are<br>I (AGR), Industrial (IND), Fre<br>RSH), and Aquaculture (AQU<br>rotect those uses include sta                                                                                                                               | I in the Basin Plan. The<br>er the Project will affect<br>er quality standards.<br>Upper Mojave River<br>defined as Municipal<br>shwater<br>A).<br>ndards for bacteria,                                                                                      | 2-7          |
|                                                               | Hydrologic Area, B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n the Project area, within the<br>eneficial Uses may include M<br>large (GWR), Water Contact                                                                                                                                                                                                                                                                                                     | IUN, AGR,                                                                                                                                                                                                                                                    |              |

Daniel Alcayaga - 4 -April 5, 2023 1), Noncontact Water Recreation (REC-2), Warm Freshwater Habitat 2-7 (WARM), Cold Freshwater Habitat (COLD), Wildlife Habitat (WILD), cont. and the Flood Peak Attenuation/Flood Water Storage (FLD). PERMITTING REQUIREMENTS A number of activities that will be implemented have the potential to impact waters of the State and, therefore, may require permits issued by either the State Water Resources Control Board (State Water Board) or Lahontan Water Board. The required permits may include the following. 1. Streambed alteration and/or discharge of dredge and/or fill material to a surface water, including water diversions, may require a CWA, section 401 water quality certification for impacts to federal waters (waters of the U.S.), or dredge and fill WDRs for impacts to non-federal waters, both issued by the Lahontan Water Board. 2. Land disturbance of more than 1 acre may require a CWA, section 402(p) storm 2-8 water permit, including a National Pollutant Discharge Elimination System (NPDES) General Construction Storm Water Permit, Water Quality Order (WQO) 2009-0009-DWQ, obtained from the State Water Board, or an individual storm water permit obtained from the Lahontan Water Board. 3. Water diversion and/or dewatering activities may be subject to discharge and monitoring requirements under either NPDES General Permit, Limited Threat Discharges to Surface Waters, Board Order No. R6T-2014-0049, or General Waste Discharge Requirements for Discharges to Land with a Low Threat to Water Quality, WQO-2003-0003, both issued by the Lahontan Water Board. Project proponents should consult with Water Board staff early on should implementation of individual projects result in activities that trigger these permitting actions. Information regarding these permits, including application forms, can be downloaded from our web site at http://www.waterboards.ca.gov/lahontan/. Thank you for the opportunity to comment on the DEIR. If you have any guestions regarding this letter, please contact me at (760) 241-7305 tiffany.steinert@waterboards.ca.gov or Jan Zimmerman, Senior Engineering Geologist, at (760) 241-7376 Jan.zimmerman@waterboards.ca.gov. Please send all future 2-9 correspondence regarding this Project to the Water Board's email address at Lahontan@waterboards.ca.gov and be sure to include the Project name in the subject line.

fany Steinert

Tiffany Steinert Engineering Geologist

cc: State Clearinghouse (SCH No. 2021120062) (state.clearinghouse@opr.ca.gov) California Dept. of Fish and Wildlife (AskRegion6@wildlife.ca.gov)

## Letter 2 Lahontan Regional Water Quality Control Board

Tiffany Steinert, Engineering Geologist April 5, 2023

2-1 The comment provides introductory remarks and identifies the Lahontan Regional Water Quality Control Board (RWQCB) as a responsible agency for the project under CEQA. The comment encourages the Town to integrate elements into the project that promote watershed management, support low impact development (LID), and reduce the effects of hydromodification.

This comment is noted and pages 1-3, 1-4, and 2-34 of the Draft EIR identify the Lahontan RWQCB as a responsible agency. Pages 2-23 and 2-24 of the Draft EIR further identify project features that are designed to promote watershed management, support LID practices, and reduce the effects of hydromodification. Specifically, five stormwater bioretention basins are proposed throughout the travel center to collect surface runoff. Another bioretention basin would be located along Stoddard Wells Road to collect surface runoff from the RV park. These bioretention systems were designed to function in a similar manner as the physical, chemical, and biological processes in the natural environment. The systems would capture runoff, promote infiltration and evapotranspiration, recharge groundwater, and remove nutrients, sediment, and heavy metals carried in stormwater. See also the response to comment 1-2 above.

As discussed on page 2-29 of the Draft EIR, stormwater would flow from the onsite retention basins through a new underground stormwater pipe that would discharge to existing drainage at Bell Mountain Wash south of the project site. As discussed on page 3.9-12 of the Draft EIR, a Hydrology Report (Lane Engineers, Inc. 2022) was prepared for the project and was included as Appendix F to the Draft EIR. Based on the findings of the Hydrology Report, the project design and storm drain system would have capacity to accommodate the modeled rainfall events (2-year, 5-year, 10-year, 25-year, 50-year, and 100-year 24-hour storm events). In addition, the Hydrology Report concluded that the project would decrease the volume of stormwater runoff and peak discharge from the existing pre-development condition (Lane Engineers, Inc. 2022). The Draft EIR concludes that impact related to the alteration of drainage patterns would be less than significant and no mitigation is required.

The Draft EIR includes the information requested by the commenter. Further, the comment does not identify any specific concern that the Draft EIR's conclusions are flawed or unsupported by substantial evidence. Therefore, no revisions to the Draft EIR are necessary in response to this comment.

- 2-2 The comment describes the authority of the Lahontan RWQCB in protecting waters of the State within the Lahontan Region and states that additional protections are in place for waters of the United States (US). The comment provides reference to the Water Quality Control Plan for the Lahontan Region (Basin Plan) (Lahontan RWQCB 2019). Pages 3.9-4 and 3.9-5 of the Draft EIR discuss the applicability of the Basin Plan to the project. The Basin Plan's beneficial uses for receiving waters near the project site and water quality objectives are further referenced on Pages 3.9-8 and 3.9-9 of the Draft EIR. Page 3.9-13 of the Draft EIR states that the project would not conflict with or obstruct implementation of the Basin Plan through the implementation of operational BMPs and compliance with applicable permits and concludes that the impact would be less than significant. The comment is not related to the adequacy of the CEQA document, nor does the comment identify any specific concern that the Draft EIR's conclusions are flawed or unsupported by substantial evidence. Therefore, no revisions to the Draft EIR are necessary in response to this comment.
- 2-3 The comment describes the function and processes of watersheds. The comment identifies the role of the Mojave Integrated Regional Water Management Group in managing water quantity and quality issues the Upper Mojave River Valley groundwater basin and recognizes that water management plans are in development. The comment is not related to the adequacy of the CEQA document, nor does the comment identify any specific concern that the Draft EIR's conclusions are flawed or unsupported by substantial evidence. No further response is required.

- 2-4 The comment describes the purpose and principles of LID and describes examples of LID practices. Refer to Response 2-1 above, which identifies project features that support LID practices. The comment is not related to the adequacy of the CEQA document, nor does the comment identify any specific concern that the Draft EIR's conclusions are flawed or unsupported by substantial evidence. No further response is required.
- 2-5 The comment states that increase runoff from development results in adverse effects and describes the importance of maintaining the pre-development hydrograph. The comment expresses a preference for stormwater control measures that are compatible with LID (e.g., bioretention swales, pervious pavement, and vegetated infiltration basins) over traditional practices (e.g., channelization and stream armoring). Refer to Response 2-1 above, which identifies project features that support LID practices. As also noted in Response 2-1, the project would decrease the volume of stormwater runoff and peak discharge from the existing pre-development condition (Lane Engineers, Inc. 2022). The project design already considers the features requested by the commenter. Further, the comment does not identify any specific concern that the Draft EIR's conclusions are flawed or unsupported by substantial evidence. Therefore, no revisions to the Draft EIR are necessary in response to this comment.
- 2-6 The comment provides a definition of hydromodification and describes the adverse effects associated with this practice. Refer to Response 2-1 above. As noted above, the Hydrology Report concluded that the project would decrease the volume of stormwater runoff and peak discharge from the existing pre-development condition (Lane Engineers, Inc. 2022). The comment does not identify any specific concern that the Draft EIR's conclusions are flawed or unsupported by substantial evidence. Therefore, no revisions to the Draft EIR are necessary in response to this comment.
- 2-7 The comment identifies the beneficial uses for the surface and groundwaters within the project area. Pages 3.9-8 and 3.9-9 of the Draft EIR identify the beneficial uses and the constituents for which water quality objectives have been established. Refer to Response 2-2 above, which provides a summary of the analysis and conclusions related to the project's consistency with the Basin Plan. The comment does not identify any specific concern that the Draft EIR's conclusions are flawed or unsupported by substantial evidence. Therefore, no revisions to the Draft EIR are necessary in response to this comment.
- 2-8 The comment identifies permits that may be required for the project from the SWRCB and the Lahontan RWQCB. As discussed on Page 3.4-29 of the Draft EIR, Mitigation Measure 3.4-1 would be required to compensate for the disturbance or loss of state and federally protected wetlands and other waters. The measure specifically requires preparation of a wetland delineation report to determine the exact acreage of waters of the US and state that would be filled or degraded as a result of project implementation. The measure states that applicable permits, including a Section 404 permit and a Section 401 Water Quality Certification, will be obtained as needed. As discussed on page 3.9-10, project construction would disturb more than one acre of soil and would be subject to the requirements of the NPDES Construction General Permit from the Lahontan RWQCB. As noted in Response 1-2, the project would implement operational BMPs as specified in a project-specific WQMP to ensure that the Town remains in compliance with its MS4 permit; therefore, an individual stormwater permit would not be applicable to the project. In the unlikely event that water diversion or dewatering activities are required, the project applicant will consult with the RWQCB to ensure that applicable permits are obtained. The comment does not identify any specific concern that the Draft EIR's conclusions are flawed or unsupported by substantial evidence. Therefore, no revisions to the Draft EIR are necessary in response to this comment.
- 2-9 The comment provides closing remarks and the contact information for further coordination with Lahontan RWQCB staff. This comment is not related to the adequacy of the CEQA document. No further response is required.

# 3 REVISIONS TO THE DRAFT EIR

This chapter presents changes made to the Draft EIR since its publication and public review. CEQA requires recirculation of an EIR when the lead agency adds "significant new information" to an EIR after public notice is given of the availability of a draft EIR for public review under State CEQA Guidelines, California Code of Regulations (CCR), Title 14, Section 15087, but before EIR certification (State CEQA Guidelines CCR, Title 14, Section 15088.5[a]). Recirculation is not required unless the EIR is changed in a way that would deprive the public of the opportunity to comment on a substantial adverse environmental effect of the project or a feasible way to mitigate or avoid such an effect (including a feasible project alternative) that the project's proponents have declined to implement. Examples of significant new information include (i) a new significant impact for which no feasible mitigation is available to fully mitigate the impact (thus resulting in a significant and unavoidable impact), (ii) a substantial increase in the severity of a disclosed environmental impact, (iii) development of a new feasible alternative or mitigation measures that are considerably different from others previously analyzed and would clearly lessen environmental impacts but that the project proponent declines to adopt, and (iv) information indicating that the draft EIR was so fundamentally and basically inadequate and conclusory in nature that meaningful public review and comment were precluded (State CEQA Guidelines CCR, Title 14, Section 15088.5[a]). Recirculation is not required when the new information added to the EIR merely clarifies or amplifies or makes insignificant modifications in an adequate EIR (State CEQA Guidelines CCR, Title 14, Section 15088.5[b]).

No changes to the project description or the environmental setting have occurred subsequent to the release of the Draft EIR for public review. However, the following revision has been made to Appendix B of the Draft EIR to correct an error in the supporting documentation (i.e., modeling). As discussed further in Section 3.1 below, the air quality, greenhouse gas, and energy discussion presented in Section 3.2, "Air Quality," Section 3.5, "Energy," and Section 3.7, "Greenhouse Gas Emissions and Climate Change," of the Draft EIR contained the correct analysis, modeling input/output, and impact conclusions, although a previous version of the modeling input/output data was included in Appendix B of the Draft EIR. Because the analysis contained within Sections 3.2, 3.5, and 3.7 of the Draft EIR is correct and the correct modeling data is included in Appendix A of this Final EIR, recirculation of the Draft EIR is not required.

## 3.1 REVISION TO APPENDIX B, "AIR QUALITY, GREENHOUSE GAS, AND ENERGY MODELING"

As described in Section 3.2, "Air Quality," Section 3.5, "Energy," and Section 3.7, "Greenhouse Gas Emissions and Climate Change," of the Draft EIR, the project would not utilize natural gas during operations. The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 output files provided in Appendix B of the Draft EIR incorrectly show that the project would utilize natural gas during operations. These outdated files were based on previous design plans for the project, which included natural gas appliances and plumbing. Appendix B of the Draft EIR has therefore been revised to include the correct CalEEMod output files, which are consistent with the analysis provided in Sections 3.2, 3.5, and 3.7 of the Draft EIR.

As described on page 2-5 of the Draft EIR, the project design includes an 80-kilowatt rooftop solar system on the roof of the proposed truck maintenance building. The operational energy and greenhouse gas emissions analysis As in Sections 3.5 and 3.7 of the Draft EIR takes into account the proposed rooftop solar system. However, the files provided in Appendix B of the Draft EIR were based on previous design plans for the project, which did not include a rooftop solar system. Appendix B of the Draft EIR has therefore been updated to include the correct output files, which are consistent with the analysis provided in Sections 3.5 and 3.7 of the Draft EIR, and to include additional supporting information regarding performance assumptions and energy savings from photovoltaic systems.

The updated appendix files are included in Appendix A to this Final EIR, entitled *Revisions to Appendix B of the Draft EIR*. This revision does not constitute "significant new information" requiring recirculation because the analysis and conclusions in Sections 3.2, 3.5, and 3.7 of the Draft EIR remain unchanged.

This page intentionally left blank.

# 4 **REFERENCES**

- Ahiablame, Laurent M., Bernard A. Engel, and Indrajeet Chaubey. 2012. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Journal of Water, Air, and Soil Pollution. 223:4253-4273.
- Lahontan Regional Water Quality Control Board. 2019. *Water Quality Control Plan for the Lahontan Region (Basin Plan)*. Adopted March 31, 1995; reflects amendments through October 29, 2019. Retrieved from: https://www.waterboards.ca.gov/lahontan/water\_issues/programs/basin\_plan/references.html. Accessed September 20, 2021.

Lahontan RWQCB. See Lahontan Regional Water Quality Control Board.

Lane Engineers, Inc. 2022. Hydrology Report, New Travel Center, Stoddard Wells Road, East of Interstate 15, Apple Valley, CA.

This page intentionally left blank.

# 5 LIST OF PREPARERS

| Town of Apple Valley (Lead Agency) Daniel Alcayaga, AICP | Planning Manager |
|----------------------------------------------------------|------------------|
| Best Best & Krieger (Legal Review)                       |                  |
| Charity Schiller                                         | Legal Counsel    |
| Megan Kilmer                                             | Legal Counsel    |
| Hannah Park                                              | Legal Counsel    |
| Remy Moose Manley (Legal Review)                         |                  |
| James G. Moose                                           | Legal Counsel    |
| Ascent Environmental, Inc. (CEQA Compliance)             |                  |
| Eric Ruby                                                | Principal        |
|                                                          |                  |

| Ene Ruby          | плера                                                     |
|-------------------|-----------------------------------------------------------|
| Nicole Greenfield | Assistant Project Manager                                 |
| Matt McFalls      | Air Quality, Greenhouse Gas Emissions, and Climate Change |
| Michele Mattei    | Publishing Specialist                                     |
| Gayiety Lane      | Publishing Specialist                                     |

This page intentionally left blank.

# Appendix A

Revisions to Appendix B of the Draft EIR

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## Love's Truck Stop Apple Valley

San Bernardino-Mojave Desert County, Winter

## **1.0 Project Characteristics**

## 1.1 Land Usage

| Land Uses                            | Size   | Metric        | Lot Acreage | Floor Surface Area | Population |
|--------------------------------------|--------|---------------|-------------|--------------------|------------|
| Other Asphalt Surfaces               | 1.34   | Acre          | 1.34        | 58,370.40          | 0          |
| Parking Lot                          | 183.00 | Space         | 1.65        | 73,200.00          | 0          |
| City Park                            | 11.20  | Acre          | 11.20       | 487,872.00         | 0          |
| Fast Food Restaurant with Drive Thru | 3.04   | 1000sqft      | 0.07        | 3,040.00           | 0          |
| Mobile Home Park                     | 88.00  | Dwelling Unit | 11.09       | 105,600.00         | 0          |
| Automobile Care Center               | 13.79  | 1000sqft      | 0.32        | 13,790.00          | 0          |
| Convenience Market (24 Hour)         | 12.91  | 1000sqft      | 0.30        | 12,910.00          | 0          |
| Gasoline/Service Station             | 25.00  | Pump          | 0.08        | 3,529.37           | 0          |

## **1.2 Other Project Characteristics**

| Urbanization               | Rural                      | Wind Speed (m/s)           | 2.6 | Precipitation Freq (Days)  | 32   |
|----------------------------|----------------------------|----------------------------|-----|----------------------------|------|
| Climate Zone               | 10                         |                            |     | Operational Year           | 2023 |
| Utility Company            | Southern California Edison |                            |     |                            |      |
| CO2 Intensity<br>(Ib/MWhr) | 351                        | CH4 Intensity<br>(Ib/MWhr) | 0   | N2O Intensity<br>(Ib/MWhr) | 0    |

#### **1.3 User Entered Comments & Non-Default Data**

Project Characteristics - 2023 operational for SCE EF based on CAPCOA Handbook Update, Table E-4.3 (pdf page 683/771), downloadable at: https://www.airquality.org/residents/climate-change/ghg-handbook-caleemod Emissions are in CO2e, so CH4 and N2O zeroed out.

Land Use - For Service Center: 183 parking spaces, 25 pumps, fast food, auto care, and convenience store per PD. For RV park, mobile home park represents RV park (for electrical hookups and utilities) spaces. Convenience store added to service center. Landscaping for service center and RV area & renention basin = city park

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Construction Phase - Construction schedule based on a 9-month construction phase and operation in 2023 per PD. Default schedule adjusted based on PD. Trenching accounts for water main work - overlaps with building construction and lasts 2 months. Water main paving added as "other asphalt".

Off-road Equipment - Undergrounding/water main work equipment assumed to be the same as a default grading phase. Default all other phases.

Trips and VMT - Default worker and vendor trips. No hauling assumed.

Architectural Coating - Rule 1113. 150 g/L for all interior, exterior, and parking. Mobile home park not painted, so residential painting zeroed out.

Vehicle Trips - Adjusted based on trip rates provided by trip analysis. 213.04 trips per pump total (106.52 each for trucks and auto) and 2.7 trips/RV site per day. VMT adjusted per traffic sub to relfect most trips are diverted. 1.82 mi/trip for Service Center. For RV park, trip lengths, trip purpose, and mode splits adjusted based on other lodging uses (motel/hotel) from caleemod.

Fleet Mix - Fleet average for Gas/Service Station; For RV, adjusted to be 100% motorhome

Woodstoves - no hearths assumed (RV park). All values zeroed out.

Consumer Products -

Area Coating - Rule 1113. 150 g/L. No residential painting. Same as construction.

Energy Use - Project will have no natural gas service. Effective increase in kwh to compensate accounted for assuming 3,412 kwh per BTU. See conversion sheet. RV park based on 20 kw/day per RV + outdoor lighting similar to a parking lot.

Water And Wastewater - from PD: 26,000 gpd (365 days) total; for travel center: 12,000 gpd, 3,000 gpd for landscaping (remainder indoor). RV Park: 14,000 gpd, of which 11,000 gpd for landscaping (remainder indoor). Zero'd out water demand for other uses.

Solid Waste - default waste metrics

Area Mitigation -

Energy Mitigation - 80 kw DC system at the project site (34.53,-117.22), default ststem info in NREL PVWATTS: fixed (open rack), standard module, default system losses and efficiency = 148,484 kwh/yr

Grading -

| Table Name              | Column Name                     | Default Value | New Value |
|-------------------------|---------------------------------|---------------|-----------|
| tblArchitecturalCoating | ConstArea_Residential_Exterior  | 71,280.00     | 0.00      |
| tblArchitecturalCoating | ConstArea_Residential_Interior  | 213,840.00    | 0.00      |
| tblArchitecturalCoating | EF_Nonresidential_Exterior      | 250.00        | 150.00    |
| tblArchitecturalCoating | EF_Nonresidential_Interior      | 250.00        | 150.00    |
| tblArchitecturalCoating | EF_Parking                      | 250.00        | 150.00    |
| tblAreaCoating          | Area_EF_Nonresidential_Exterior | 250           | 150       |
| tblAreaCoating          | Area_EF_Nonresidential_Interior | 250           | 150       |
| tblAreaCoating          | Area_EF_Parking                 | 250           | 150       |
| tblAreaCoating          | Area_EF_Residential_Exterior    | 250           | 150       |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblAreaCoating       | Area_EF_Residential_Interior | 250      | 150      |
|----------------------|------------------------------|----------|----------|
| tblAreaCoating       | Area_Nonresidential_Interior | 49904    | 0        |
| tblAreaCoating       | Area_Residential_Interior    | 213840   | 0        |
| tblConstructionPhase | NumDays                      | 35.00    | 22.00    |
| tblConstructionPhase | NumDays                      | 440.00   | 132.00   |
| tblConstructionPhase | NumDays                      | 30.00    | 22.00    |
| tblConstructionPhase | NumDays                      | 45.00    | 22.00    |
| tblConstructionPhase | NumDays                      | 35.00    | 22.00    |
| tblConstructionPhase | NumDays                      | 20.00    | 22.00    |
| tblEnergyUse         | LightingElect                | 1,038.60 | 2,836.10 |
| tblEnergyUse         | NT24E                        | 5.02     | 10.04    |
| tblEnergyUse         | NT24E                        | 2.44     | 2.53     |
| tblEnergyUse         | NT24E                        | 28.48    | 85.86    |
| tblEnergyUse         | NT24E                        | 5.02     | 10.04    |
| tblEnergyUse         | NT24E                        | 4,004.74 | 7,300.00 |
| tblEnergyUse         | NT24NG                       | 17.13    | 0.00     |
| tblEnergyUse         | NT24NG                       | 0.30     | 0.00     |
| tblEnergyUse         | NT24NG                       | 195.77   | 0.00     |
| tblEnergyUse         | NT24NG                       | 17.13    | 0.00     |
| tblEnergyUse         | NT24NG                       | 6,030.00 | 0.00     |
| tblEnergyUse         | T24E                         | 1.97     | 6.49     |
| tblEnergyUse         | T24E                         | 4.09     | 4.66     |
| tblEnergyUse         | T24E                         | 11.06    | 33.94    |
| tblEnergyUse         | T24E                         | 1.97     | 6.49     |
| tblEnergyUse         | T24E                         | 164.88   | 0.00     |
| tblEnergyUse         | T24NG                        | 15.20    | 0.00     |
| tblEnergyUse         | T24NG                        | 1.90     | 0.00     |
| tblEnergyUse         | T24NG                        | 76.89    | 0.00     |
| tblEnergyUse         | T24NG                        | 15.20    | 0.00     |
|                      |                              |          |          |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblEnergyUse              | T24NG                | 16,337.91   | 0.00                      |
|---------------------------|----------------------|-------------|---------------------------|
| tblFireplaces             | FireplaceDayYear     | 82.00       | 0.00                      |
| tblFireplaces             | FireplaceHourDay     | 3.00        | 0.00                      |
| tblFireplaces             | FireplaceWoodMass    | 3,078.40    | 0.00                      |
| tblFireplaces             | NumberGas            | 48.40       | 0.00                      |
| tblFireplaces             | NumberNoFireplace    | 8.80        | 0.00                      |
| tblFireplaces             | NumberWood           | 30.80       | 0.00                      |
| tblFleetMix               | HHD                  | 0.02        | 0.00                      |
| tblFleetMix               | LDA                  | 0.54        | 0.00                      |
| tblFleetMix               | LDT1                 | 0.06        | 0.00                      |
| tblFleetMix               | LDT2                 | 0.17        | 0.00                      |
| tblFleetMix               | LHD1                 | 0.03        | 0.00                      |
| tblFleetMix               | LHD2                 | 7.1960e-003 | 0.00                      |
| tblFleetMix               | MCY                  | 0.03        | 0.00                      |
| tblFleetMix               | MDV                  | 0.14        | 0.00                      |
| tblFleetMix               | МН                   | 5.0710e-003 | 1.00                      |
| tblFleetMix               | MHD                  | 0.01        | 0.00                      |
| tblFleetMix               | OBUS                 | 5.5900e-004 | 0.00                      |
| tblFleetMix               | SBUS                 | 9.5400e-004 | 0.00                      |
| tblFleetMix               | UBUS                 | 2.5400e-004 | 0.00                      |
| tblLandUse                | Population           | 252.00      | 0.00                      |
| tblOffRoadEquipment       | OffRoadEquipmentType |             | Excavators                |
| tblOffRoadEquipment       | OffRoadEquipmentType |             | Graders                   |
| tblOffRoadEquipment       | OffRoadEquipmentType |             | Rubber Tired Dozers       |
| tblOffRoadEquipment       | OffRoadEquipmentType |             | Scrapers                  |
| tblOffRoadEquipment       | OffRoadEquipmentType |             | Tractors/Loaders/Backhoes |
| tblProjectCharacteristics | CH4IntensityFactor   | 0.033       | 0                         |
| tblProjectCharacteristics | CO2IntensityFactor   | 390.98      | 351                       |
| tblProjectCharacteristics | N2OIntensityFactor   | 0.004       | 0                         |
|                           |                      |             |                           |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblProjectCharacteristics | UrbanizationLevel | Urban    | Rural  |
|---------------------------|-------------------|----------|--------|
| tblVehicleTrips           | CC_TL             | 6.60     | 1.82   |
| tblVehicleTrips           | CC_TTP            | 79.00    | 100.00 |
| tblVehicleTrips           | CNW_TL            | 6.60     | 0.00   |
| tblVehicleTrips           | CNW_TTP           | 19.00    | 0.00   |
| tblVehicleTrips           | CW_TL             | 14.70    | 0.00   |
| tblVehicleTrips           | CW_TTP            | 2.00     | 0.00   |
| tblVehicleTrips           | DV_TP             | 27.00    | 0.00   |
| tblVehicleTrips           | DV_TP             | 11.00    | 38.00  |
| tblVehicleTrips           | HO_TL             | 7.90     | 6.60   |
| tblVehicleTrips           | HO_TTP            | 40.60    | 19.00  |
| tblVehicleTrips           | HS_TL             | 7.10     | 6.60   |
| tblVehicleTrips           | HS_TTP            | 19.20    | 19.00  |
| tblVehicleTrips           | HW_TL             | 16.80    | 14.70  |
| tblVehicleTrips           | HW_TTP            | 40.20    | 62.00  |
| tblVehicleTrips           | PB_TP             | 59.00    | 0.00   |
| tblVehicleTrips           | PB_TP             | 3.00     | 4.00   |
| tblVehicleTrips           | PR_TP             | 14.00    | 100.00 |
| tblVehicleTrips           | PR_TP             | 86.00    | 58.00  |
| tblVehicleTrips           | ST_TR             | 23.72    | 0.00   |
| tblVehicleTrips           | ST_TR             | 1.96     | 0.00   |
| tblVehicleTrips           | ST_TR             | 1,084.17 | 0.00   |
| tblVehicleTrips           | ST_TR             | 616.12   | 0.00   |
| tblVehicleTrips           | ST_TR             | 182.17   | 213.04 |
| tblVehicleTrips           | ST_TR             | 4.61     | 2.70   |
| tblVehicleTrips           | SU_TR             | 11.88    | 0.00   |
| tblVehicleTrips           | SU_TR             | 2.19     | 0.00   |
| tblVehicleTrips           | SU_TR             | 901.17   | 0.00   |
| tblVehicleTrips           | SU_TR             | 472.58   | 0.00   |
| •                         |                   |          |        |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblVehicleTrips | SU_TR               | 166.88        | 213.04       |
|-----------------|---------------------|---------------|--------------|
| tblVehicleTrips | SU_TR               | 4.24          | 2.70         |
| tblVehicleTrips | WD_TR               | 23.72         | 0.00         |
| tblVehicleTrips | WD_TR               | 0.78          | 0.00         |
| tblVehicleTrips | WD_TR               | 762.28        | 0.00         |
| tblVehicleTrips | WD_TR               | 470.95        | 0.00         |
| tblVehicleTrips | WD_TR               | 172.01        | 213.04       |
| tblVehicleTrips | WD_TR               | 5.00          | 2.70         |
| tblWater        | IndoorWaterUseRate  | 1,297,378.47  | 0.00         |
| tblWater        | IndoorWaterUseRate  | 956,276.25    | 0.00         |
| tblWater        | IndoorWaterUseRate  | 922,742.49    | 0.00         |
| tblWater        | IndoorWaterUseRate  | 332,047.22    | 3,285,000.00 |
| tblWater        | IndoorWaterUseRate  | 5,733,554.25  | 1,095,000.00 |
| tblWater        | OutdoorWaterUseRate | 795,167.45    | 0.00         |
| tblWater        | OutdoorWaterUseRate | 13,344,591.12 | 0.00         |
| tblWater        | OutdoorWaterUseRate | 586,104.80    | 0.00         |
| tblWater        | OutdoorWaterUseRate | 58,898.46     | 0.00         |
| tblWater        | OutdoorWaterUseRate | 203,512.81    | 1,095,000.00 |
| tblWater        | OutdoorWaterUseRate | 3,614,632.03  | 4,015,000.00 |
| tblWoodstoves   | NumberCatalytic     | 4.40          | 0.00         |
| tblWoodstoves   | NumberNoncatalytic  | 4.40          | 0.00         |
| tblWoodstoves   | WoodstoveDayYear    | 82.00         | 0.00         |
| tblWoodstoves   | WoodstoveWoodMass   | 3,019.20      | 0.00         |
|                 |                     | 0,0.0.20      |              |

## 2.0 Emissions Summary

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

|         | ROG     | NOx     | СО      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Year    |         |         |         |        | lb/e             | day             |               |                   |                  |                |          |                 | lb/c            | lay    |        |                 |
| 2022    | 9.6693  | 97.8131 | 71.3396 | 0.1475 | 29.5376          | 4.4936          | 34.0312       | 13.9357           | 4.1462           | 18.0819        | 0.0000   | 14,609.24<br>58 | 14,609.24<br>58 | 4.2042 | 0.4365 | 14,807.28<br>57 |
| 2023    | 25.7152 | 54.0573 | 58.2977 | 0.1455 | 5.2327           | 2.1757          | 7.4083        | 1.4039            | 2.0174           | 3.4212         | 0.0000   | 14,399.76<br>43 | 14,399.76<br>43 | 2.6997 | 0.4142 | 14,590.67<br>73 |
| Maximum | 25.7152 | 97.8131 | 71.3396 | 0.1475 | 29.5376          | 4.4936          | 34.0312       | 13.9357           | 4.1462           | 18.0819        | 0.0000   | 14,609.24<br>58 | 14,609.24<br>58 | 4.2042 | 0.4365 | 14,807.28<br>57 |

## Mitigated Construction

|         | ROG     | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Year    |         |         |         |        | lb/d             | day             |               |                   |                  |                |          |                 | lb/d            | day    |        |                 |
| 2022    | 9.6693  | 97.8131 | 71.3396 | 0.1475 | 29.5376          | 4.4936          | 34.0312       | 13.9357           | 4.1462           | 18.0819        | 0.0000   | 14,609.24<br>58 | 14,609.24<br>58 | 4.2042 | 0.4365 | 14,807.28<br>57 |
| 2023    | 25.7152 | 54.0573 | 58.2977 | 0.1455 | 5.2327           | 2.1757          | 7.4083        | 1.4039            | 2.0174           | 3.4212         | 0.0000   | 14,399.76<br>43 | 14,399.76<br>43 | 2.6997 | 0.4142 | 14,590.67<br>73 |
| Maximum | 25.7152 | 97.8131 | 71.3396 | 0.1475 | 29.5376          | 4.4936          | 34.0312       | 13.9357           | 4.1462           | 18.0819        | 0.0000   | 14,609.24<br>58 | 14,609.24<br>58 | 4.2042 | 0.4365 | 14,807.28<br>57 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                      | ROG  | NOx  | со   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 2.2 Overall Operational

## Unmitigated Operational

|          | ROG     | NOx     | CO      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|----------|---------|---------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Category |         |         |         |                 | lb/e             | day             |               |                   |                  |                |          |                 | lb/c            | day    |        |                 |
| Area     | 3.4472  | 0.0839  | 7.2873  | 3.9000e-<br>004 |                  | 0.0403          | 0.0403        |                   | 0.0403           | 0.0403         | 0.0000   | 13.1274         | 13.1274         | 0.0127 | 0.0000 | 13.4452         |
| Energy   | 0.0000  | 0.0000  | 0.0000  | 0.0000          |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000          | 0.0000          | 0.0000 | 0.0000 | 0.0000          |
| Mobile   | 11.1859 | 15.3088 | 61.9802 | 0.1382          | 9.2733           | 0.2401          | 9.5134        | 2.5330            | 0.2278           | 2.7607         |          | 14,092.03<br>08 | 14,092.03<br>08 | 1.0493 | 0.9200 | 14,392.43<br>55 |
| Total    | 14.6331 | 15.3928 | 69.2675 | 0.1385          | 9.2733           | 0.2804          | 9.5537        | 2.5330            | 0.2680           | 2.8010         | 0.0000   | 14,105.15<br>82 | 14,105.15<br>82 | 1.0620 | 0.9200 | 14,405.88<br>08 |

#### Mitigated Operational

|          | ROG     | NOx     | CO      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|----------|---------|---------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Category |         |         |         |                 | lb/e             | day             |               |                   |                  |                |          |                 | lb/c            | lay    |        |                 |
| Area     | 3.4472  | 0.0839  | 7.2873  | 3.9000e-<br>004 |                  | 0.0403          | 0.0403        |                   | 0.0403           | 0.0403         | 0.0000   | 13.1274         | 13.1274         | 0.0127 | 0.0000 | 13.4452         |
| Energy   | 0.0000  | 0.0000  | 0.0000  | 0.0000          |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000          | 0.0000          | 0.0000 | 0.0000 | 0.0000          |
| Mobile   | 11.1859 | 15.3088 | 61.9802 | 0.1382          | 9.2733           | 0.2401          | 9.5134        | 2.5330            | 0.2278           | 2.7607         |          | 14,092.03<br>08 | 14,092.03<br>08 | 1.0493 | 0.9200 | 14,392.43<br>55 |
| Total    | 14.6331 | 15.3928 | 69.2675 | 0.1385          | 9.2733           | 0.2804          | 9.5537        | 2.5330            | 0.2680           | 2.8010         | 0.0000   | 14,105.15<br>82 | 14,105.15<br>82 | 1.0620 | 0.9200 | 14,405.88<br>08 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                      | ROG  | NOx  | со   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

# **3.0 Construction Detail**

#### **Construction Phase**

| Phase<br>Number | Phase Name                              | Phase Type            | Start Date | End Date  | Num Days<br>Week | Num Days | Phase Description |
|-----------------|-----------------------------------------|-----------------------|------------|-----------|------------------|----------|-------------------|
| 1               | Demolition                              | Demolition            | 10/3/2022  | 11/1/2022 | 5                | 22       |                   |
| 2               | Site Preparation                        | Site Preparation      | 10/3/2022  | 11/1/2022 | 5                | 22       |                   |
| 3               | Grading                                 | Grading               | 10/3/2022  | 11/1/2022 | 5                | 22       |                   |
|                 | Water Main Trenching /<br>Undergounding | Trenching             | 11/2/2022  | 1/2/2023  | 5                | 44       |                   |
| 5               | Building Construction                   | Building Construction | 12/1/2022  | 6/2/2023  | 5                | 132      |                   |
| 6               | Paving                                  | Paving                | 6/3/2023   | 7/4/2023  | 5                | 22       |                   |
| 7               | Architectural Coating                   | Architectural Coating | 6/3/2023   | 7/4/2023  | 5                | 22       |                   |

## Acres of Grading (Site Preparation Phase): 33

#### Acres of Grading (Grading Phase): 66

#### Acres of Paving: 2.99

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 49,904; Non-Residential Outdoor: 16,635; Striped Parking Area: 7,894 (Architectural Coating – sqft)

#### OffRoad Equipment

| Phase Name       | Offroad Equipment Type   | Amount | Usage Hours | Horse Power | Load Factor |
|------------------|--------------------------|--------|-------------|-------------|-------------|
| Demolition       | Concrete/Industrial Saws | 1      | 8.00        | 81          | 0.73        |
| Demolition       | Excavators               | 3      | 8.00        | 158         | 0.38        |
| Demolition       | Rubber Tired Dozers      | 2      | 8.00        | 247         | 0.40        |
| Site Preparation | Rubber Tired Dozers      | 3      | 8.00        | 247         | 0.40        |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Tractors/Loaders/Backhoes | 4                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Excavators                | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Graders                   | 1                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rubber Tired Dozers       | 1                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Scrapers                  | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tractors/Loaders/Backhoes | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Excavators                | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Graders                   | 1                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rubber Tired Dozers       | 1                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Scrapers                  | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tractors/Loaders/Backhoes | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cranes                    | 1                                                                                                                                                                                                                                                                                                        | 7.00                                                                                                                                                                                                                                                                                              | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Forklifts                 | 3                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Generator Sets            | 1                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tractors/Loaders/Backhoes | 3                                                                                                                                                                                                                                                                                                        | 7.00                                                                                                                                                                                                                                                                                              | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Welders                   | 1                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pavers                    | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Paving Equipment          | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rollers                   | 2                                                                                                                                                                                                                                                                                                        | 8.00                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Air Compressors           | 1                                                                                                                                                                                                                                                                                                        | 6.00                                                                                                                                                                                                                                                                                              | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | Excavators<br>Graders<br>Rubber Tired Dozers<br>Scrapers<br>Tractors/Loaders/Backhoes<br>Excavators<br>Graders<br>Rubber Tired Dozers<br>Scrapers<br>Tractors/Loaders/Backhoes<br>Cranes<br>Forklifts<br>Generator Sets<br>Tractors/Loaders/Backhoes<br>Welders<br>Pavers<br>Paving Equipment<br>Rollers | Excavators2Graders1Rubber Tired Dozers1Scrapers2Tractors/Loaders/Backhoes2Excavators2Graders1Rubber Tired Dozers1Scrapers2Graders1Scrapers2Tractors/Loaders/Backhoes2Tractors/Loaders/Backhoes2Cranes1Forklifts3Generator Sets1Tractors/Loaders/Backhoes3Welders1Pavers2Paving Equipment2Rollers2 | Excavators       2       8.00         Graders       1       8.00         Rubber Tired Dozers       1       8.00         Scrapers       2       8.00         Tractors/Loaders/Backhoes       2       8.00         Excavators       2       8.00         Graders       1       8.00         Excavators       2       8.00         Graders       1       8.00         Crapers       2       8.00         Scrapers       2       8.00         Cranes       1       7.00         Forklifts       3       8.00         Generator Sets       1       8.00         Tractors/Loaders/Backhoes       3       7.00         Welders       1       8.00         Pavers       2       8.00         Pavers       2       8.00         Rollers       2       8.00 | Excavators         2         8.00         158           Graders         1         8.00         187           Rubber Tired Dozers         1         8.00         247           Scrapers         2         8.00         367           Tractors/Loaders/Backhoes         2         8.00         97           Excavators         2         8.00         158           Graders         2         8.00         97           Excavators         2         8.00         158           Graders         1         8.00         158           Graders         1         8.00         187           Rubber Tired Dozers         1         8.00         247           Scrapers         2         8.00         367           Tractors/Loaders/Backhoes         2         8.00         367           Cranes         1         7.00         231           Forklifts         3         8.00         89           Generator Sets         1         8.00         84           Tractors/Loaders/Backhoes         3         7.00         97           Welders         1         8.00         46           Pavers |

#### Trips and VMT

| Phase Name           | Offroad Equipment<br>Count | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Worker Vehicle<br>Class | Vendor<br>Vehicle Class | Hauling<br>Vehicle Class |
|----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------|
| Demolition           | 6                          | 15.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Site Preparation     | 7                          | 18.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Grading              | 8                          | 20.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Water Main Trenching | 8                          | 20.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Building Construction | 9 | 334.00 | 116.00 | 0.00 | 16.80 | 6.60 | 20.00 | LD_Mix | HDT_Mix | HHDT |
|-----------------------|---|--------|--------|------|-------|------|-------|--------|---------|------|
| Paving                | 6 | 15.00  | 0.00   | 0.00 | 16.80 | 6.60 | 20.00 | LD_Mix | HDT_Mix | HHDT |
| Architectural Coating | 1 | 67.00  | 0.00   | 0.00 | 16.80 | 6.60 | 20.00 | LD_Mix | HDT_Mix | HHDT |
| Architectural Coating | 1 | 67.00  | 0.00   | 0.00 | 16.80 | 6.60 | 20.00 | LD_Mix | HDT_Mix | HHDT |

## **3.1 Mitigation Measures Construction**

# 3.2 Demolition - 2022

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 2.6392 | 25.7194 | 20.5941 | 0.0388 |                  | 1.2427          | 1.2427        |                   | 1.1553           | 1.1553         |          | 3,746.781<br>2 | 3,746.781<br>2 | 1.0524 |     | 3,773.092<br>0 |
| Total    | 2.6392 | 25.7194 | 20.5941 | 0.0388 |                  | 1.2427          | 1.2427        |                   | 1.1553           | 1.1553         |          | 3,746.781<br>2 | 3,746.781<br>2 | 1.0524 |     | 3,773.092<br>0 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.2 Demolition - 2022

## Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/d      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0666 | 0.0472 | 0.5678 | 1.6000e-<br>003 | 0.1916           | 9.9000e-<br>004 | 0.1926        | 0.0508            | 9.1000e-<br>004  | 0.0517         |          | 161.4885  | 161.4885  | 4.3600e-<br>003 | 4.4800e-<br>003 | 162.9334 |
| Total    | 0.0666 | 0.0472 | 0.5678 | 1.6000e-<br>003 | 0.1916           | 9.9000e-<br>004 | 0.1926        | 0.0508            | 9.1000e-<br>004  | 0.0517         |          | 161.4885  | 161.4885  | 4.3600e-<br>003 | 4.4800e-<br>003 | 162.9334 |

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/o             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 2.6392 | 25.7194 | 20.5941 | 0.0388 |                  | 1.2427          | 1.2427        |                   | 1.1553           | 1.1553         | 0.0000   | 3,746.781<br>2 | 3,746.781<br>2 | 1.0524 |     | 3,773.092<br>0 |
| Total    | 2.6392 | 25.7194 | 20.5941 | 0.0388 |                  | 1.2427          | 1.2427        |                   | 1.1553           | 1.1553         | 0.0000   | 3,746.781<br>2 | 3,746.781<br>2 | 1.0524 |     | 3,773.092<br>0 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

## 3.2 Demolition - 2022

#### **Mitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/d      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0666 | 0.0472 | 0.5678 | 1.6000e-<br>003 | 0.1916           | 9.9000e-<br>004 | 0.1926        | 0.0508            | 9.1000e-<br>004  | 0.0517         |          | 161.4885  | 161.4885  | 4.3600e-<br>003 | 4.4800e-<br>003 | 162.9334 |
| Total    | 0.0666 | 0.0472 | 0.5678 | 1.6000e-<br>003 | 0.1916           | 9.9000e-<br>004 | 0.1926        | 0.0508            | 9.1000e-<br>004  | 0.0517         |          | 161.4885  | 161.4885  | 4.3600e-<br>003 | 4.4800e-<br>003 | 162.9334 |

## 3.3 Site Preparation - 2022

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |     |                |
| Fugitive Dust |        |         |         |        | 19.6570          | 0.0000          | 19.6570       | 10.1025           | 0.0000           | 10.1025        |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 3.1701 | 33.0835 | 19.6978 | 0.0380 |                  | 1.6126          | 1.6126        |                   | 1.4836           | 1.4836         |          | 3,686.061<br>9 | 3,686.061<br>9 | 1.1922 |     | 3,715.865<br>5 |
| Total         | 3.1701 | 33.0835 | 19.6978 | 0.0380 | 19.6570          | 1.6126          | 21.2696       | 10.1025           | 1.4836           | 11.5860        |          | 3,686.061<br>9 | 3,686.061<br>9 | 1.1922 |     | 3,715.865<br>5 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.3 Site Preparation - 2022

## Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0799 | 0.0566 | 0.6814 | 1.9200e-<br>003 | 0.2299           | 1.1900e-<br>003 | 0.2311        | 0.0610            | 1.1000e-<br>003  | 0.0621         |          | 193.7862  | 193.7862  | 5.2300e-<br>003 | 5.3800e-<br>003 | 195.5200 |
| Total    | 0.0799 | 0.0566 | 0.6814 | 1.9200e-<br>003 | 0.2299           | 1.1900e-<br>003 | 0.2311        | 0.0610            | 1.1000e-<br>003  | 0.0621         |          | 193.7862  | 193.7862  | 5.2300e-<br>003 | 5.3800e-<br>003 | 195.5200 |

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/e             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Fugitive Dust |        |         |         |        | 19.6570          | 0.0000          | 19.6570       | 10.1025           | 0.0000           | 10.1025        |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 3.1701 | 33.0835 | 19.6978 | 0.0380 |                  | 1.6126          | 1.6126        |                   | 1.4836           | 1.4836         | 0.0000   | 3,686.061<br>9 | 3,686.061<br>9 | 1.1922 |     | 3,715.865<br>5 |
| Total         | 3.1701 | 33.0835 | 19.6978 | 0.0380 | 19.6570          | 1.6126          | 21.2696       | 10.1025           | 1.4836           | 11.5860        | 0.0000   | 3,686.061<br>9 | 3,686.061<br>9 | 1.1922 |     | 3,715.865<br>5 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.3 Site Preparation - 2022

## **Mitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/d      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0799 | 0.0566 | 0.6814 | 1.9200e-<br>003 | 0.2299           | 1.1900e-<br>003 | 0.2311        | 0.0610            | 1.1000e-<br>003  | 0.0621         |          | 193.7862  | 193.7862  | 5.2300e-<br>003 | 5.3800e-<br>003 | 195.5200 |
| Total    | 0.0799 | 0.0566 | 0.6814 | 1.9200e-<br>003 | 0.2299           | 1.1900e-<br>003 | 0.2311        | 0.0610            | 1.1000e-<br>003  | 0.0621         |          | 193.7862  | 193.7862  | 5.2300e-<br>003 | 5.3800e-<br>003 | 195.5200 |

## 3.4 Grading - 2022

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/e             | day             |               |                   |                  |                |          |                | lb/d           | day    |     |                |
| Fugitive Dust |        |         |         |        | 9.2036           | 0.0000          | 9.2036        | 3.6538            | 0.0000           | 3.6538         |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 3.6248 | 38.8435 | 29.0415 | 0.0621 |                  | 1.6349          | 1.6349        |                   | 1.5041           | 1.5041         |          | 6,011.410<br>5 | 6,011.410<br>5 | 1.9442 |     | 6,060.015<br>8 |
| Total         | 3.6248 | 38.8435 | 29.0415 | 0.0621 | 9.2036           | 1.6349          | 10.8385       | 3.6538            | 1.5041           | 5.1579         |          | 6,011.410<br>5 | 6,011.410<br>5 | 1.9442 |     | 6,060.015<br>8 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.4 Grading - 2022

## Unmitigated Construction Off-Site

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0888 | 0.0629 | 0.7571 | 2.1300e-<br>003 | 0.2555           | 1.3200e-<br>003 | 0.2568        | 0.0678            | 1.2200e-<br>003  | 0.0690         |          | 215.3179  | 215.3179  | 5.8100e-<br>003 | 5.9800e-<br>003 | 217.2445 |
| Total    | 0.0888 | 0.0629 | 0.7571 | 2.1300e-<br>003 | 0.2555           | 1.3200e-<br>003 | 0.2568        | 0.0678            | 1.2200e-<br>003  | 0.0690         |          | 215.3179  | 215.3179  | 5.8100e-<br>003 | 5.9800e-<br>003 | 217.2445 |

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category      |        |         |         |        | lb/e             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Fugitive Dust |        |         |         |        | 9.2036           | 0.0000          | 9.2036        | 3.6538            | 0.0000           | 3.6538         |          |                | 0.0000         |        |     | 0.0000         |
| Off-Road      | 3.6248 | 38.8435 | 29.0415 | 0.0621 |                  | 1.6349          | 1.6349        |                   | 1.5041           | 1.5041         | 0.0000   | 6,011.410<br>5 | 6,011.410<br>5 | 1.9442 |     | 6,060.015<br>8 |
| Total         | 3.6248 | 38.8435 | 29.0415 | 0.0621 | 9.2036           | 1.6349          | 10.8385       | 3.6538            | 1.5041           | 5.1579         | 0.0000   | 6,011.410<br>5 | 6,011.410<br>5 | 1.9442 |     | 6,060.015<br>8 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.4 Grading - 2022

#### **Mitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | lay             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0888 | 0.0629 | 0.7571 | 2.1300e-<br>003 | 0.2555           | 1.3200e-<br>003 | 0.2568        | 0.0678            | 1.2200e-<br>003  | 0.0690         |          | 215.3179  | 215.3179  | 5.8100e-<br>003 | 5.9800e-<br>003 | 217.2445 |
| Total    | 0.0888 | 0.0629 | 0.7571 | 2.1300e-<br>003 | 0.2555           | 1.3200e-<br>003 | 0.2568        | 0.0678            | 1.2200e-<br>003  | 0.0690         |          | 215.3179  | 215.3179  | 5.8100e-<br>003 | 5.9800e-<br>003 | 217.2445 |

## 3.5 Water Main Trenching / Undergounding - 2022

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/e             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 3.6248 | 38.8435 | 29.0415 | 0.0621 |                  | 1.6349          | 1.6349        |                   | 1.5041           | 1.5041         |          | 6,011.410<br>5 | 6,011.410<br>5 | 1.9442 |     | 6,060.015<br>8 |
| Total    | 3.6248 | 38.8435 | 29.0415 | 0.0621 |                  | 1.6349          | 1.6349        |                   | 1.5041           | 1.5041         |          | 6,011.410<br>5 | 6,011.410<br>5 | 1.9442 |     | 6,060.015<br>8 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.5 Water Main Trenching / Undergounding - 2022

## Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0888 | 0.0629 | 0.7571 | 2.1300e-<br>003 | 0.2555           | 1.3200e-<br>003 | 0.2568        | 0.0678            | 1.2200e-<br>003  | 0.0690         |          | 215.3179  | 215.3179  | 5.8100e-<br>003 | 5.9800e-<br>003 | 217.2445 |
| Total    | 0.0888 | 0.0629 | 0.7571 | 2.1300e-<br>003 | 0.2555           | 1.3200e-<br>003 | 0.2568        | 0.0678            | 1.2200e-<br>003  | 0.0690         |          | 215.3179  | 215.3179  | 5.8100e-<br>003 | 5.9800e-<br>003 | 217.2445 |

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/e             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 3.6248 | 38.8435 | 29.0415 | 0.0621 |                  | 1.6349          | 1.6349        |                   | 1.5041           | 1.5041         | 0.0000   | 6,011.410<br>5 | 6,011.410<br>5 | 1.9442 |     | 6,060.015<br>8 |
| Total    | 3.6248 | 38.8435 | 29.0415 | 0.0621 |                  | 1.6349          | 1.6349        |                   | 1.5041           | 1.5041         | 0.0000   | 6,011.410<br>5 | 6,011.410<br>5 | 1.9442 |     | 6,060.015<br>8 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.5 Water Main Trenching / Undergounding - 2022

## **Mitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/d      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0888 | 0.0629 | 0.7571 | 2.1300e-<br>003 | 0.2555           | 1.3200e-<br>003 | 0.2568        | 0.0678            | 1.2200e-<br>003  | 0.0690         |          | 215.3179  | 215.3179  | 5.8100e-<br>003 | 5.9800e-<br>003 | 217.2445 |
| Total    | 0.0888 | 0.0629 | 0.7571 | 2.1300e-<br>003 | 0.2555           | 1.3200e-<br>003 | 0.2568        | 0.0678            | 1.2200e-<br>003  | 0.0690         |          | 215.3179  | 215.3179  | 5.8100e-<br>003 | 5.9800e-<br>003 | 217.2445 |

## 3.5 Water Main Trenching / Undergounding - 2023

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/o             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 3.3217 | 34.5156 | 28.0512 | 0.0621 |                  | 1.4245          | 1.4245        |                   | 1.3105           | 1.3105         |          | 6,011.477<br>7 | 6,011.477<br>7 | 1.9442 |     | 6,060.083<br>6 |
| Total    | 3.3217 | 34.5156 | 28.0512 | 0.0621 |                  | 1.4245          | 1.4245        |                   | 1.3105           | 1.3105         |          | 6,011.477<br>7 | 6,011.477<br>7 | 1.9442 |     | 6,060.083<br>6 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.5 Water Main Trenching / Undergounding - 2023

## Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | day             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0822 | 0.0552 | 0.6928 | 2.0600e-<br>003 | 0.2555           | 1.2400e-<br>003 | 0.2567        | 0.0678            | 1.1500e-<br>003  | 0.0689         |          | 208.4024  | 208.4024  | 5.2100e-<br>003 | 5.4900e-<br>003 | 210.1687 |
| Total    | 0.0822 | 0.0552 | 0.6928 | 2.0600e-<br>003 | 0.2555           | 1.2400e-<br>003 | 0.2567        | 0.0678            | 1.1500e-<br>003  | 0.0689         |          | 208.4024  | 208.4024  | 5.2100e-<br>003 | 5.4900e-<br>003 | 210.1687 |

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/o             | day             |               |                   |                  |                |          |                | lb/d           | lay    |     |                |
| Off-Road | 3.3217 | 34.5156 | 28.0512 | 0.0621 |                  | 1.4245          | 1.4245        |                   | 1.3105           | 1.3105         | 0.0000   | 6,011.477<br>7 | 6,011.477<br>7 | 1.9442 |     | 6,060.083<br>6 |
| Total    | 3.3217 | 34.5156 | 28.0512 | 0.0621 |                  | 1.4245          | 1.4245        |                   | 1.3105           | 1.3105         | 0.0000   | 6,011.477<br>7 | 6,011.477<br>7 | 1.9442 |     | 6,060.083<br>6 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.5 Water Main Trenching / Undergounding - 2023

## **Mitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/d      | lay             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0822 | 0.0552 | 0.6928 | 2.0600e-<br>003 | 0.2555           | 1.2400e-<br>003 | 0.2567        | 0.0678            | 1.1500e-<br>003  | 0.0689         |          | 208.4024  | 208.4024  | 5.2100e-<br>003 | 5.4900e-<br>003 | 210.1687 |
| Total    | 0.0822 | 0.0552 | 0.6928 | 2.0600e-<br>003 | 0.2555           | 1.2400e-<br>003 | 0.2567        | 0.0678            | 1.1500e-<br>003  | 0.0689         |          | 208.4024  | 208.4024  | 5.2100e-<br>003 | 5.4900e-<br>003 | 210.1687 |

#### 3.6 Building Construction - 2022

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/o             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 1.7062 | 15.6156 | 16.3634 | 0.0269 |                  | 0.8090          | 0.8090        |                   | 0.7612           | 0.7612         |          | 2,554.333<br>6 | 2,554.333<br>6 | 0.6120 |     | 2,569.632<br>2 |
| Total    | 1.7062 | 15.6156 | 16.3634 | 0.0269 |                  | 0.8090          | 0.8090        |                   | 0.7612           | 0.7612         |          | 2,554.333<br>6 | 2,554.333<br>6 | 0.6120 |     | 2,569.632<br>2 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.6 Building Construction - 2022

## Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | day    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000  | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.1894 | 5.1700 | 1.9009  | 0.0208 | 0.7110           | 0.0581          | 0.7691        | 0.2048            | 0.0555           | 0.2603         |          | 2,232.374<br>1 | 2,232.374<br>1 | 0.0599 | 0.3307 | 2,332.410<br>3 |
| Worker   | 1.4821 | 1.0504 | 12.6432 | 0.0356 | 4.2662           | 0.0221          | 4.2883        | 1.1314            | 0.0204           | 1.1517         |          | 3,595.809<br>7 | 3,595.809<br>7 | 0.0971 | 0.0998 | 3,627.982<br>9 |
| Total    | 1.6715 | 6.2204 | 14.5441 | 0.0564 | 4.9772           | 0.0802          | 5.0574        | 1.3361            | 0.0759           | 1.4120         |          | 5,828.183<br>7 | 5,828.183<br>7 | 0.1569 | 0.4305 | 5,960.393<br>2 |

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/o             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 1.7062 | 15.6156 | 16.3634 | 0.0269 |                  | 0.8090          | 0.8090        |                   | 0.7612           | 0.7612         | 0.0000   | 2,554.333<br>6 | 2,554.333<br>6 | 0.6120 |     | 2,569.632<br>2 |
| Total    | 1.7062 | 15.6156 | 16.3634 | 0.0269 |                  | 0.8090          | 0.8090        |                   | 0.7612           | 0.7612         | 0.0000   | 2,554.333<br>6 | 2,554.333<br>6 | 0.6120 |     | 2,569.632<br>2 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.6 Building Construction - 2022

## Mitigated Construction Off-Site

|          | ROG    | NOx    | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | lay    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000  | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.1894 | 5.1700 | 1.9009  | 0.0208 | 0.7110           | 0.0581          | 0.7691        | 0.2048            | 0.0555           | 0.2603         |          | 2,232.374<br>1 | 2,232.374<br>1 | 0.0599 | 0.3307 | 2,332.410<br>3 |
| Worker   | 1.4821 | 1.0504 | 12.6432 | 0.0356 | 4.2662           | 0.0221          | 4.2883        | 1.1314            | 0.0204           | 1.1517         |          | 3,595.809<br>7 | 3,595.809<br>7 | 0.0971 | 0.0998 | 3,627.982<br>9 |
| Total    | 1.6715 | 6.2204 | 14.5441 | 0.0564 | 4.9772           | 0.0802          | 5.0574        | 1.3361            | 0.0759           | 1.4120         |          | 5,828.183<br>7 | 5,828.183<br>7 | 0.1569 | 0.4305 | 5,960.393<br>2 |

#### 3.6 Building Construction - 2023

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 1.5728 | 14.3849 | 16.2440 | 0.0269 |                  | 0.6997          | 0.6997        | 1<br>1<br>1       | 0.6584           | 0.6584         |          | 2,555.209<br>9 | 2,555.209<br>9 | 0.6079 |     | 2,570.406<br>1 |
| Total    | 1.5728 | 14.3849 | 16.2440 | 0.0269 |                  | 0.6997          | 0.6997        |                   | 0.6584           | 0.6584         |          | 2,555.209<br>9 | 2,555.209<br>9 | 0.6079 |     | 2,570.406<br>1 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.6 Building Construction - 2023

## Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |         |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | lay    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000  | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.1243 | 4.1794 | 1.7402  | 0.0200 | 0.7110           | 0.0294          | 0.7404        | 0.2048            | 0.0281           | 0.2329         |          | 2,144.354<br>1 | 2,144.354<br>1 | 0.0555 | 0.3170 | 2,240.202<br>0 |
| Worker   | 1.3722 | 0.9222 | 11.5695 | 0.0344 | 4.2662           | 0.0208          | 4.2870        | 1.1314            | 0.0191           | 1.1505         |          | 3,480.320<br>1 | 3,480.320<br>1 | 0.0870 | 0.0917 | 3,509.817<br>0 |
| Total    | 1.4965 | 5.1016 | 13.3097 | 0.0544 | 4.9772           | 0.0502          | 5.0274        | 1.3361            | 0.0473           | 1.3834         |          | 5,624.674<br>2 | 5,624.674<br>2 | 0.1424 | 0.4087 | 5,750.019<br>0 |

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/o             | day             |               |                   |                  |                |          |                | lb/d           | day    |     |                |
| Off-Road | 1.5728 | 14.3849 | 16.2440 | 0.0269 |                  | 0.6997          | 0.6997        |                   | 0.6584           | 0.6584         | 0.0000   | 2,555.209<br>9 | 2,555.209<br>9 | 0.6079 |     | 2,570.406<br>1 |
| Total    | 1.5728 | 14.3849 | 16.2440 | 0.0269 |                  | 0.6997          | 0.6997        |                   | 0.6584           | 0.6584         | 0.0000   | 2,555.209<br>9 | 2,555.209<br>9 | 0.6079 |     | 2,570.406<br>1 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.6 Building Construction - 2023

## Mitigated Construction Off-Site

|          | ROG    | NOx    | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |         |        | lb/e             | day             |               |                   |                  |                |          |                | lb/c           | lay    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000  | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.1243 | 4.1794 | 1.7402  | 0.0200 | 0.7110           | 0.0294          | 0.7404        | 0.2048            | 0.0281           | 0.2329         |          | 2,144.354<br>1 | 2,144.354<br>1 | 0.0555 | 0.3170 | 2,240.202<br>0 |
| Worker   | 1.3722 | 0.9222 | 11.5695 | 0.0344 | 4.2662           | 0.0208          | 4.2870        | 1.1314            | 0.0191           | 1.1505         |          | 3,480.320<br>1 | 3,480.320<br>1 | 0.0870 | 0.0917 | 3,509.817<br>0 |
| Total    | 1.4965 | 5.1016 | 13.3097 | 0.0544 | 4.9772           | 0.0502          | 5.0274        | 1.3361            | 0.0473           | 1.3834         |          | 5,624.674<br>2 | 5,624.674<br>2 | 0.1424 | 0.4087 | 5,750.019<br>0 |

## 3.7 Paving - 2023

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/e             | day             |               |                   |                  |                |          |                | lb/c           | lay    |     |                |
| Off-Road | 1.0327 | 10.1917 | 14.5842 | 0.0228 |                  | 0.5102          | 0.5102        |                   | 0.4694           | 0.4694         |          | 2,207.584<br>1 | 2,207.584<br>1 | 0.7140 |     | 2,225.433<br>6 |
| Paving   | 0.3561 |         |         |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |                | 0.0000         |        |     | 0.0000         |
| Total    | 1.3888 | 10.1917 | 14.5842 | 0.0228 |                  | 0.5102          | 0.5102        |                   | 0.4694           | 0.4694         |          | 2,207.584<br>1 | 2,207.584<br>1 | 0.7140 |     | 2,225.433<br>6 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.7 Paving - 2023

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | lay             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0616 | 0.0414 | 0.5196 | 1.5500e-<br>003 | 0.1916           | 9.3000e-<br>004 | 0.1925        | 0.0508            | 8.6000e-<br>004  | 0.0517         |          | 156.3018  | 156.3018  | 3.9000e-<br>003 | 4.1200e-<br>003 | 157.6265 |
| Total    | 0.0616 | 0.0414 | 0.5196 | 1.5500e-<br>003 | 0.1916           | 9.3000e-<br>004 | 0.1925        | 0.0508            | 8.6000e-<br>004  | 0.0517         |          | 156.3018  | 156.3018  | 3.9000e-<br>003 | 4.1200e-<br>003 | 157.6265 |

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2            | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/d             | day             |               |                   |                  |                |          |                      | lb/c           | lay    |     |                |
| Off-Road | 1.0327 | 10.1917 | 14.5842 | 0.0228 |                  | 0.5102          | 0.5102        |                   | 0.4694           | 0.4694         | 0.0000   | 2,207.584<br>1       | 2,207.584<br>1 | 0.7140 |     | 2,225.433<br>6 |
| Paving   | 0.3561 |         |         |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | <br>1<br>1<br>1<br>1 | 0.0000         |        |     | 0.0000         |
| Total    | 1.3888 | 10.1917 | 14.5842 | 0.0228 |                  | 0.5102          | 0.5102        |                   | 0.4694           | 0.4694         | 0.0000   | 2,207.584<br>1       | 2,207.584<br>1 | 0.7140 |     | 2,225.433<br>6 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.7 Paving - 2023

#### **Mitigated Construction Off-Site**

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/d      | lay             |                 |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Worker   | 0.0616 | 0.0414 | 0.5196 | 1.5500e-<br>003 | 0.1916           | 9.3000e-<br>004 | 0.1925        | 0.0508            | 8.6000e-<br>004  | 0.0517         |          | 156.3018  | 156.3018  | 3.9000e-<br>003 | 4.1200e-<br>003 | 157.6265 |
| Total    | 0.0616 | 0.0414 | 0.5196 | 1.5500e-<br>003 | 0.1916           | 9.3000e-<br>004 | 0.1925        | 0.0508            | 8.6000e-<br>004  | 0.0517         |          | 156.3018  | 156.3018  | 3.9000e-<br>003 | 4.1200e-<br>003 | 157.6265 |

#### 3.8 Architectural Coating - 2023

|                 | ROG     | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O | CO2e     |
|-----------------|---------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----|----------|
| Category        |         |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | lay    |     |          |
| Archit. Coating | 23.5225 |        |        |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |           | 0.0000    |        |     | 0.0000   |
| Off-Road        | 0.1917  | 1.3030 | 1.8111 | 2.9700e-<br>003 |                  | 0.0708          | 0.0708        |                   | 0.0708           | 0.0708         |          | 281.4481  | 281.4481  | 0.0168 |     | 281.8690 |
| Total           | 23.7142 | 1.3030 | 1.8111 | 2.9700e-<br>003 |                  | 0.0708          | 0.0708        |                   | 0.0708           | 0.0708         |          | 281.4481  | 281.4481  | 0.0168 |     | 281.8690 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.8 Architectural Coating - 2023

## Unmitigated Construction Off-Site

|          | ROG    | NOx    | со     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |        | lb/o             | day             |               |                   |                  |                |          |                | lb/d           | day    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Worker   | 0.5505 | 0.3700 | 4.6417 | 0.0138 | 3.1998           | 8.3400e-<br>003 | 3.2081        | 0.8192            | 7.6800e-<br>003  | 0.8269         |          | 1,396.296<br>1 | 1,396.296<br>1 | 0.0349 | 0.0368 | 1,408.130<br>2 |
| Total    | 0.5505 | 0.3700 | 4.6417 | 0.0138 | 3.1998           | 8.3400e-<br>003 | 3.2081        | 0.8192            | 7.6800e-<br>003  | 0.8269         |          | 1,396.296<br>1 | 1,396.296<br>1 | 0.0349 | 0.0368 | 1,408.130<br>2 |

|                 | ROG     | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O | CO2e     |
|-----------------|---------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----|----------|
| Category        |         |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | day    |     |          |
| Archit. Coating | 23.5225 |        |        |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |           | 0.0000    |        |     | 0.0000   |
| Off-Road        | 0.1917  | 1.3030 | 1.8111 | 2.9700e-<br>003 |                  | 0.0708          | 0.0708        |                   | 0.0708           | 0.0708         | 0.0000   | 281.4481  | 281.4481  | 0.0168 |     | 281.8690 |
| Total           | 23.7142 | 1.3030 | 1.8111 | 2.9700e-<br>003 |                  | 0.0708          | 0.0708        |                   | 0.0708           | 0.0708         | 0.0000   | 281.4481  | 281.4481  | 0.0168 |     | 281.8690 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.8 Architectural Coating - 2023

#### **Mitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |        | lb/d             | day             |               |                   |                  |                |          |                | lb/c           | lay    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Worker   | 0.5505 | 0.3700 | 4.6417 | 0.0138 | 3.1998           | 8.3400e-<br>003 | 3.2081        | 0.8192            | 7.6800e-<br>003  | 0.8269         |          | 1,396.296<br>1 | 1,396.296<br>1 | 0.0349 | 0.0368 | 1,408.130<br>2 |
| Total    | 0.5505 | 0.3700 | 4.6417 | 0.0138 | 3.1998           | 8.3400e-<br>003 | 3.2081        | 0.8192            | 7.6800e-<br>003  | 0.8269         |          | 1,396.296<br>1 | 1,396.296<br>1 | 0.0349 | 0.0368 | 1,408.130<br>2 |

# 4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|             | ROG     | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|-------------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Category    |         |         |         |        | lb/e             | day             |               |                   |                  |                |          |                 | lb/c            | lay    |        |                 |
| Mitigated   | 11.1859 | 15.3088 | 61.9802 | 0.1382 | 9.2733           | 0.2401          | 9.5134        | 2.5330            | 0.2278           | 2.7607         |          | 14,092.03<br>08 | 14,092.03<br>08 | 1.0493 | 0.9200 | 14,392.43<br>55 |
| Unmitigated | 11.1859 | 15.3088 | 61.9802 | 0.1382 | 9.2733           | 0.2401          | 9.5134        | 2.5330            | 0.2278           | 2.7607         |          | 14,092.03<br>08 | 14,092.03<br>08 | 1.0493 | 0.9200 | 14,392.43<br>55 |

# 4.2 Trip Summary Information

|                                      | Ave      | age Daily Trip Ra | ite      | Unmitigated | Mitigated  |
|--------------------------------------|----------|-------------------|----------|-------------|------------|
| Land Use                             | Weekday  | Saturday          | Sunday   | Annual VMT  | Annual VMT |
| Automobile Care Center               | 0.00     | 0.00              | 0.00     |             |            |
| City Park                            | 0.00     | 0.00              | 0.00     |             |            |
| Convenience Market (24 Hour)         | 0.00     | 0.00              | 0.00     |             |            |
| Fast Food Restaurant with Drive Thru | 0.00     | 0.00              | 0.00     |             |            |
| Gasoline/Service Station             | 5,326.00 | 5,326.00          | 5326.00  | 3,528,368   | 3,528,368  |
| Mobile Home Park                     | 237.60   | 237.60            | 237.60   | 678,819     | 678,819    |
| Other Asphalt Surfaces               | 0.00     | 0.00              | 0.00     |             |            |
| Parking Lot                          | 0.00     | 0.00              | 0.00     |             |            |
| Total                                | 5,563.60 | 5,563.60          | 5,563.60 | 4,207,187   | 4,207,187  |

# 4.3 Trip Type Information

|                                 |            | Miles      |             |            | Trip %     |             |         | Trip Purpos | e %     |
|---------------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------|
| Land Use                        | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted    | Pass-by |
| Automobile Care Center          | 14.70      | 6.60       | 6.60        | 33.00      | 48.00      | 19.00       | 21      | 51          | 28      |
| City Park                       | 14.70      | 6.60       | 6.60        | 33.00      | 48.00      | 19.00       | 66      | 28          | 6       |
| Convenience Market (24 Hour)    | 14.70      | 6.60       | 6.60        | 0.90       | 80.10      | 19.00       | 24      | 15          | 61      |
| Fast Food Restaurant with Drive | 14.70      | 6.60       | 6.60        | 2.20       | 78.80      | 19.00       | 29      | 21          | 50      |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                          |            | Miles      |             |            | Trip %     |             |         | Trip Purpos | e %     |
|--------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------|
| Land Use                 | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted    | Pass-by |
| Gasoline/Service Station | 0.00       | 1.82       | 0.00        | 0.00       | 100.00     | 0.00        | 100     | 0           | 0       |
| Mobile Home Park         | 14.70      | 6.60       | 6.60        | 62.00      | 19.00      | 19.00       | 58      | 38          | 4       |
| Other Asphalt Surfaces   | 14.70      | 6.60       | 6.60        | 0.00       | 0.00       | 0.00        | 0       | 0           | 0       |
| Parking Lot              | 14.70      | 6.60       | 6.60        | 0.00       | 0.00       | 0.00        | 0       | 0           | 0       |

#### 4.4 Fleet Mix

| Land Use                                | LDA      | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | MH       |
|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Automobile Care Center                  | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| City Park                               | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Convenience Market (24 Hour)            | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Fast Food Restaurant with Drive<br>Thru | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Gasoline/Service Station                | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Mobile Home Park                        | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 |
| Other Asphalt Surfaces                  | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Parking Lot                             | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |

# 5.0 Energy Detail

Historical Energy Use: N

# 5.1 Mitigation Measures Energy

Kilowatt Hours of Renewable Electricity Generated

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                         | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|-------------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|--------|
| Category                |        |        |        |        | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | lay    |        |        |
| NaturalGas<br>Mitigated | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
|                         | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 5.2 Energy by Land Use - NaturalGas

#### **Unmitigated**

|                                            | NaturalGa<br>s Use | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|--------------------------------------------|--------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|--------|
| Land Use                                   | kBTU/yr            |        |        |        |        | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | lay    |        |        |
| Automobile Care<br>Center                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| City Park                                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Convenience<br>Market (24 Hour)            | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Fast Food<br>Restaurant with<br>Drive Thru | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Gasoline/Service<br>Station                | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Mobile Home<br>Park                        | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Other Asphalt<br>Surfaces                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Parking Lot                                | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                                      |                    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 5.2 Energy by Land Use - NaturalGas

## Mitigated

|                                            | NaturalGa<br>s Use | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10    | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|--------------------------------------------|--------------------|--------|--------|--------|--------|---------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|--------|
| Land Use                                   | kBTU/yr            |        |        |        |        | lb/e                | day             |               |                   |                  |                |          |           | lb/d      | day    |        |        |
| Automobile Care<br>Center                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                     | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| City Park                                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | <br> <br> <br> <br> | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Convenience<br>Market (24 Hour)            | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                     | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Fast Food<br>Restaurant with<br>Drive Thru | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                     | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Gasoline/Service<br>Station                | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                     | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Mobile Home<br>Park                        | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                     | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Other Asphalt<br>Surfaces                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                     | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Parking Lot                                | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                     | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                                      |                    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                     | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

# 6.0 Area Detail

6.1 Mitigation Measures Area

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|             | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|-------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| Category    |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | lay    |        |         |
| Mitigated   | 3.4472 | 0.0839 | 7.2873 | 3.9000e-<br>004 |                  | 0.0403          | 0.0403        |                   | 0.0403           | 0.0403         | 0.0000   | 13.1274   | 13.1274   | 0.0127 | 0.0000 | 13.4452 |
| Unmitigated | 3.4472 | 0.0839 | 7.2873 | 3.9000e-<br>004 |                  | 0.0403          | 0.0403        |                   | 0.0403           | 0.0403         | 0.0000   | 13.1274   | 13.1274   | 0.0127 | 0.0000 | 13.4452 |

# 6.2 Area by SubCategory

<u>Unmitigated</u>

|                          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|--------------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| SubCategory              |        |        |        |                 | lb/e             | day             |               |                   |                  |                |          |           | lb/c      | lay    |        |         |
| Architectural<br>Coating | 0.1825 |        |        |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |           | 0.0000    |        |        | 0.0000  |
| Consumer<br>Products     | 3.0435 |        |        |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          |           | 0.0000    |        |        | 0.0000  |
| Hearth                   | 0.0000 | 0.0000 | 0.0000 | 0.0000          |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Landscaping              | 0.2211 | 0.0839 | 7.2873 | 3.9000e-<br>004 |                  | 0.0403          | 0.0403        |                   | 0.0403           | 0.0403         |          | 13.1274   | 13.1274   | 0.0127 |        | 13.4452 |
| Total                    | 3.4472 | 0.0839 | 7.2873 | 3.9000e-<br>004 |                  | 0.0403          | 0.0403        |                   | 0.0403           | 0.0403         | 0.0000   | 13.1274   | 13.1274   | 0.0127 | 0.0000 | 13.4452 |

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 6.2 Area by SubCategory

## **Mitigated**

|                          | ROG    | NOx    | СО          | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2       | Total CO2 | CH4    | N2O    | CO2e    |
|--------------------------|--------|--------|-------------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------|--------|--------|---------|
| SubCategory              |        |        |             |                 | lb/e             | day             |               |                   |                  |                |          |                 | lb/c      | lay    |        |         |
| Architectural<br>Coating | 0.1825 |        | ,<br>,<br>, |                 |                  | 0.0000          | 0.0000        | ,<br>,<br>,       | 0.0000           | 0.0000         |          | ,<br>,<br>,     | 0.0000    |        |        | 0.0000  |
| Consumer<br>Products     | 3.0435 |        |             |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         |          | <br>-<br>-<br>- | 0.0000    |        |        | 0.0000  |
| Hearth                   | 0.0000 | 0.0000 | 0.0000      | 0.0000          |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000          | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Landscaping              | 0.2211 | 0.0839 | 7.2873      | 3.9000e-<br>004 |                  | 0.0403          | 0.0403        |                   | 0.0403           | 0.0403         |          | 13.1274         | 13.1274   | 0.0127 |        | 13.4452 |
| Total                    | 3.4472 | 0.0839 | 7.2873      | 3.9000e-<br>004 |                  | 0.0403          | 0.0403        |                   | 0.0403           | 0.0403         | 0.0000   | 13.1274         | 13.1274   | 0.0127 | 0.0000 | 13.4452 |

# 7.0 Water Detail

7.1 Mitigation Measures Water

## EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 8.0 Waste Detail

## 8.1 Mitigation Measures Waste

## 9.0 Operational Offroad

| Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type |
|----------------|--------|-----------|-----------|-------------|-------------|-----------|

# **10.0 Stationary Equipment**

## Fire Pumps and Emergency Generators

| Equipment Type Number Hours/Day Hours/Year Horse Power Load Factor Fuel Type |                |        |           |            |             |             |           |
|------------------------------------------------------------------------------|----------------|--------|-----------|------------|-------------|-------------|-----------|
|                                                                              | Equipment Type | Number | Hours/Day | Hours/Year | Horse Power | Load Factor | Fuel Type |

#### **Boilers**

| Equipment type framework from the figure of the bond framework for the bond | Equipment Type | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|----------------|-----------------|---------------|-----------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|----------------|-----------------|---------------|-----------|

## User Defined Equipment

Equipment Type

Number

# **11.0 Vegetation**

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# Love's Truck Stop Apple Valley

San Bernardino-Mojave Desert County, Annual

# **1.0 Project Characteristics**

## 1.1 Land Usage

| Land Uses                            | Size   | Metric        | Lot Acreage | Floor Surface Area | Population |
|--------------------------------------|--------|---------------|-------------|--------------------|------------|
| Other Asphalt Surfaces               | 1.34   | Acre          | 1.34        | 58,370.40          | 0          |
| Parking Lot                          | 183.00 | Space         | 1.65        | 73,200.00          | 0          |
| City Park                            | 11.20  | Acre          | 11.20       | 487,872.00         | 0          |
| Fast Food Restaurant with Drive Thru | 3.04   | 1000sqft      | 0.07        | 3,040.00           | 0          |
| Mobile Home Park                     | 88.00  | Dwelling Unit | 11.09       | 105,600.00         | 0          |
| Automobile Care Center               | 13.79  | 1000sqft      | 0.32        | 13,790.00          | 0          |
| Convenience Market (24 Hour)         | 12.91  | 1000sqft      | 0.30        | 12,910.00          | 0          |
| Gasoline/Service Station             | 25.00  | Pump          | 0.08        | 3,529.37           | 0          |

## **1.2 Other Project Characteristics**

| Urbanization               | Rural                     | Wind Speed (m/s)           | 2.6 | Precipitation Freq (Days)  | 32   |
|----------------------------|---------------------------|----------------------------|-----|----------------------------|------|
| Climate Zone               | 10                        |                            |     | Operational Year           | 2023 |
| Utility Company            | Southern California Ediso | n                          |     |                            |      |
| CO2 Intensity<br>(Ib/MWhr) | 351                       | CH4 Intensity<br>(Ib/MWhr) | 0   | N2O Intensity<br>(Ib/MWhr) | 0    |

#### **1.3 User Entered Comments & Non-Default Data**

Project Characteristics - 2023 operational for SCE EF based on CAPCOA Handbook Update, Table E-4.3 (pdf page 683/771), downloadable at: https://www.airquality.org/residents/climate-change/ghg-handbook-caleemod Emissions are in CO2e, so CH4 and N2O zeroed out.

Land Use - For Service Center: 183 parking spaces, 25 pumps, fast food, auto care, and convenience store per PD. For RV park, mobile home park represents RV park (for electrical hookups and utilities) spaces. Convenience store added to service center. Landscaping for service center and RV area & renention basin = city park

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Construction Phase - Construction schedule based on a 9-month construction phase and operation in 2023 per PD. Default schedule adjusted based on PD. Trenching accounts for water main work - overlaps with building construction and lasts 2 months. Water main paving added as "other asphalt".

Off-road Equipment - Undergrounding/water main work equipment assumed to be the same as a default grading phase. Default all other phases.

Trips and VMT - Default worker and vendor trips. No hauling assumed.

Architectural Coating - Rule 1113. 150 g/L for all interior, exterior, and parking. Mobile home park not painted, so residential painting zeroed out.

Vehicle Trips - Adjusted based on trip rates provided by trip analysis. 213.04 trips per pump total (106.52 each for trucks and auto) and 2.7 trips/RV site per day. VMT adjusted per traffic sub to relfect most trips are diverted. 1.82 mi/trip for Service Center. For RV park, trip lengths, trip purpose, and mode splits adjusted based on other lodging uses (motel/hotel) from caleemod.

Fleet Mix - Fleet average for Gas/Service Station; For RV, adjusted to be 100% motorhome

Woodstoves - no hearths assumed (RV park). All values zeroed out.

**Consumer Products -**

Area Coating - Rule 1113. 150 g/L. No residential painting. Same as construction.

Energy Use - Project will have no natural gas service. Effective increase in kwh to compensate accounted for assuming 3,412 kwh per BTU. See conversion sheet. RV park based on 20 kw/day per RV + outdoor lighting similar to a parking lot.

Water And Wastewater - from PD: 26,000 gpd (365 days) total; for travel center: 12,000 gpd, 3,000 gpd for landscaping (remainder indoor). RV Park: 14,000 gpd, of which 11,000 gpd for landscaping (remainder indoor). Zero'd out water demand for other uses.

Solid Waste - default waste metrics

Area Mitigation -

Energy Mitigation - 80 kw DC system at the project site (34.53,-117.22), default ststem info in NREL PVWATTS: fixed (open rack), standard module, default system losses and efficiency = 148,484 kwh/yr

Grading -

| Table Name              | Column Name                     | Default Value | New Value |
|-------------------------|---------------------------------|---------------|-----------|
| tblArchitecturalCoating | ConstArea_Residential_Exterior  | 71,280.00     | 0.00      |
| tblArchitecturalCoating | ConstArea_Residential_Interior  | 213,840.00    | 0.00      |
| tblArchitecturalCoating | EF_Nonresidential_Exterior      | 250.00        | 150.00    |
| tblArchitecturalCoating | EF_Nonresidential_Interior      | 250.00        | 150.00    |
| tblArchitecturalCoating | EF_Parking                      | 250.00        | 150.00    |
| tblAreaCoating          | Area_EF_Nonresidential_Exterior | 250           | 150       |
| tblAreaCoating          | Area_EF_Nonresidential_Interior | 250           | 150       |
| tblAreaCoating          | Area_EF_Parking                 | 250           | 150       |
| tblAreaCoating          | Area_EF_Residential_Exterior    | 250           | 150       |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblAreaCoating       | Area_EF_Residential_Interior | 250      | 150      |
|----------------------|------------------------------|----------|----------|
| tblAreaCoating       | Area_Nonresidential_Interior | 49904    | 0        |
| tblAreaCoating       | Area_Residential_Interior    | 213840   | 0        |
| tblConstructionPhase | NumDays                      | 35.00    | 22.00    |
| tblConstructionPhase | NumDays                      | 440.00   | 132.00   |
| tblConstructionPhase | NumDays                      | 30.00    | 22.00    |
| tblConstructionPhase | NumDays                      | 45.00    | 22.00    |
| tblConstructionPhase | NumDays                      | 35.00    | 22.00    |
| tblConstructionPhase | NumDays                      | 20.00    | 22.00    |
| tblEnergyUse         | LightingElect                | 1,038.60 | 2,836.10 |
| tblEnergyUse         | NT24E                        | 5.02     | 10.04    |
| tblEnergyUse         | NT24E                        | 2.44     | 2.53     |
| tblEnergyUse         | NT24E                        | 28.48    | 85.86    |
| tblEnergyUse         | NT24E                        | 5.02     | 10.04    |
| tblEnergyUse         | NT24E                        | 4,004.74 | 7,300.00 |
| tblEnergyUse         | NT24NG                       | 17.13    | 0.00     |
| tblEnergyUse         | NT24NG                       | 0.30     | 0.00     |
| tblEnergyUse         | NT24NG                       | 195.77   | 0.00     |
| tblEnergyUse         | NT24NG                       | 17.13    | 0.00     |
| tblEnergyUse         | NT24NG                       | 6,030.00 | 0.00     |
| tblEnergyUse         | T24E                         | 1.97     | 6.49     |
| tblEnergyUse         | T24E                         | 4.09     | 4.66     |
| tblEnergyUse         | T24E                         | 11.06    | 33.94    |
| tblEnergyUse         | T24E                         | 1.97     | 6.49     |
| tblEnergyUse         | T24E                         | 164.88   | 0.00     |
| tblEnergyUse         | T24NG                        | 15.20    | 0.00     |
| tblEnergyUse         | T24NG                        | 1.90     | 0.00     |
| tblEnergyUse         | T24NG                        | 76.89    | 0.00     |
| tblEnergyUse         | T24NG                        | 15.20    | 0.00     |
|                      |                              |          |          |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblEnergyUse              | T24NG                | 16,337.91                 | 0.00 |  |
|---------------------------|----------------------|---------------------------|------|--|
| tblFireplaces             | FireplaceDayYear     | 82.00                     | 0.00 |  |
| tblFireplaces             | FireplaceHourDay     | 3.00                      | 0.00 |  |
| tblFireplaces             | FireplaceWoodMass    | 3,078.40                  | 0.00 |  |
| tblFireplaces             | NumberGas            | 48.40                     | 0.00 |  |
| tblFireplaces             | NumberNoFireplace    | 8.80                      | 0.00 |  |
| tblFireplaces             | NumberWood           | 30.80                     | 0.00 |  |
| tblFleetMix               | HHD                  | 0.02                      | 0.00 |  |
| tblFleetMix               | LDA                  | 0.54                      | 0.00 |  |
| tblFleetMix               | LDT1                 | 0.06                      | 0.00 |  |
| tblFleetMix               | LDT2                 | 0.17                      | 0.00 |  |
| tblFleetMix               | LHD1                 | 0.03                      | 0.00 |  |
| tblFleetMix               | LHD2                 | 7.1960e-003               | 0.00 |  |
| tblFleetMix               | МСҮ                  | 0.03                      | 0.00 |  |
| tblFleetMix               | MDV                  | 0.14                      | 0.00 |  |
| tblFleetMix               | MH                   | 5.0710e-003               | 1.00 |  |
| tblFleetMix               | MHD                  | 0.01                      | 0.00 |  |
| tblFleetMix               | OBUS                 | 5.5900e-004               | 0.00 |  |
| tblFleetMix               | SBUS                 | 9.5400e-004               | 0.00 |  |
| tblFleetMix               | UBUS                 | 2.5400e-004               | 0.00 |  |
| tblLandUse                | Population           | 252.00                    | 0.00 |  |
| tblOffRoadEquipment       | OffRoadEquipmentType | Excavators                |      |  |
| tblOffRoadEquipment       | OffRoadEquipmentType | Graders                   |      |  |
| tblOffRoadEquipment       | OffRoadEquipmentType | Rubber Tired Dozers       |      |  |
| tblOffRoadEquipment       | OffRoadEquipmentType | Scrapers                  |      |  |
| tblOffRoadEquipment       | OffRoadEquipmentType | Tractors/Loaders/Backhoes |      |  |
| tblProjectCharacteristics | CH4IntensityFactor   | 0.033                     | 0    |  |
| tblProjectCharacteristics | CO2IntensityFactor   | 390.98                    | 351  |  |
| tblProjectCharacteristics | N2OIntensityFactor   | 0.004                     | 0    |  |
|                           |                      | I I                       |      |  |

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblProjectCharacteristics | UrbanizationLevel | Urban    | Rural  |
|---------------------------|-------------------|----------|--------|
| tblVehicleTrips           | CC_TL             | 6.60     | 1.82   |
| tblVehicleTrips           | CC_TTP            | 79.00    | 100.00 |
| tblVehicleTrips           | CNW_TL            | 6.60     | 0.00   |
| tblVehicleTrips           | CNW_TTP           | 19.00    | 0.00   |
| tblVehicleTrips           | CW_TL             | 14.70    | 0.00   |
| tblVehicleTrips           | CW_TTP            | 2.00     | 0.00   |
| tblVehicleTrips           | DV_TP             | 27.00    | 0.00   |
| tblVehicleTrips           | DV_TP             | 11.00    | 38.00  |
| tblVehicleTrips           | HO_TL             | 7.90     | 6.60   |
| tblVehicleTrips           | HO_TTP            | 40.60    | 19.00  |
| tblVehicleTrips           | HS_TL             | 7.10     | 6.60   |
| tblVehicleTrips           | HS_TTP            | 19.20    | 19.00  |
| tblVehicleTrips           | HW_TL             | 16.80    | 14.70  |
| tblVehicleTrips           | HW_TTP            | 40.20    | 62.00  |
| tblVehicleTrips           | PB_TP             | 59.00    | 0.00   |
| tblVehicleTrips           | PB_TP             | 3.00     | 4.00   |
| tblVehicleTrips           | PR_TP             | 14.00    | 100.00 |
| tblVehicleTrips           | PR_TP             | 86.00    | 58.00  |
| tblVehicleTrips           | ST_TR             | 23.72    | 0.00   |
| tblVehicleTrips           | ST_TR             | 1.96     | 0.00   |
| tblVehicleTrips           | ST_TR             | 1,084.17 | 0.00   |
| tblVehicleTrips           | ST_TR             | 616.12   | 0.00   |
| tblVehicleTrips           | ST_TR             | 182.17   | 213.04 |
| tblVehicleTrips           | ST_TR             | 4.61     | 2.70   |
| tblVehicleTrips           | SU_TR             | 11.88    | 0.00   |
| tblVehicleTrips           | SU_TR             | 2.19     | 0.00   |
| tblVehicleTrips           | SU_TR             | 901.17   | 0.00   |
| tblVehicleTrips           | SU_TR             | 472.58   | 0.00   |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| tblVehicleTrips | SU_TR               | 166.88        | 213.04       |
|-----------------|---------------------|---------------|--------------|
| tblVehicleTrips | SU_TR               | 4.24          | 2.70         |
| tblVehicleTrips | WD_TR               | 23.72         | 0.00         |
| tblVehicleTrips | WD_TR               | 0.78          | 0.00         |
| tblVehicleTrips | WD_TR               | 762.28        | 0.00         |
| tblVehicleTrips | WD_TR               | 470.95        | 0.00         |
| tblVehicleTrips | WD_TR               | 172.01        | 213.04       |
| tblVehicleTrips | WD_TR               | 5.00          | 2.70         |
| tblWater        | IndoorWaterUseRate  | 1,297,378.47  | 0.00         |
| tblWater        | IndoorWaterUseRate  | 956,276.25    | 0.00         |
| tblWater        | IndoorWaterUseRate  | 922,742.49    | 0.00         |
| tblWater        | IndoorWaterUseRate  | 332,047.22    | 3,285,000.00 |
| tblWater        | IndoorWaterUseRate  | 5,733,554.25  | 1,095,000.00 |
| tblWater        | OutdoorWaterUseRate | 795,167.45    | 0.00         |
| tblWater        | OutdoorWaterUseRate | 13,344,591.12 | 0.00         |
| tblWater        | OutdoorWaterUseRate | 586,104.80    | 0.00         |
| tblWater        | OutdoorWaterUseRate | 58,898.46     | 0.00         |
| tblWater        | OutdoorWaterUseRate | 203,512.81    | 1,095,000.00 |
| tblWater        | OutdoorWaterUseRate | 3,614,632.03  | 4,015,000.00 |
| tblWoodstoves   | NumberCatalytic     | 4.40          | 0.00         |
| tblWoodstoves   | NumberNoncatalytic  | 4.40          | 0.00         |
| tblWoodstoves   | WoodstoveDayYear    | 82.00         | 0.00         |
| tblWoodstoves   | WoodstoveWoodMass   | 3,019.20      | 0.00         |
|                 |                     |               |              |

# 2.0 Emissions Summary

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 2.1 Overall Construction

### **Unmitigated Construction**

|         | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O             | CO2e     |
|---------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----------------|----------|
| Year    |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | '/yr   |                 |          |
| 2022    | 0.2218 | 2.1535 | 1.7737 | 3.9000e-<br>003 | 0.3839           | 0.0944          | 0.4783        | 0.1691            | 0.0872           | 0.2563         | 0.0000   | 345.8512  | 345.8512  | 0.0877 | 4.6100e-<br>003 | 349.4176 |
| 2023    | 0.4473 | 1.2216 | 1.9094 | 5.0000e-<br>003 | 0.3053           | 0.0485          | 0.3538        | 0.0817            | 0.0455           | 0.1272         | 0.0000   | 454.8949  | 454.8949  | 0.0461 | 0.0210          | 462.2895 |
| Maximum | 0.4473 | 2.1535 | 1.9094 | 5.0000e-<br>003 | 0.3839           | 0.0944          | 0.4783        | 0.1691            | 0.0872           | 0.2563         | 0.0000   | 454.8949  | 454.8949  | 0.0877 | 0.0210          | 462.2895 |

### Mitigated Construction

|         | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O             | CO2e     |
|---------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----------------|----------|
| Year    |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | '/yr   |                 |          |
| 2022    | 0.2218 | 2.1534 | 1.7737 | 3.9000e-<br>003 | 0.3839           | 0.0944          | 0.4783        | 0.1691            | 0.0872           | 0.2563         | 0.0000   | 345.8509  | 345.8509  | 0.0877 | 4.6100e-<br>003 | 349.4173 |
| 2023    | 0.4473 | 1.2216 | 1.9094 | 5.0000e-<br>003 | 0.3053           | 0.0485          | 0.3538        | 0.0817            | 0.0455           | 0.1272         | 0.0000   | 454.8947  | 454.8947  | 0.0461 | 0.0210          | 462.2893 |
| Maximum | 0.4473 | 2.1534 | 1.9094 | 5.0000e-<br>003 | 0.3839           | 0.0944          | 0.4783        | 0.1691            | 0.0872           | 0.2563         | 0.0000   | 454.8947  | 454.8947  | 0.0877 | 0.0210          | 462.2893 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|   |                      | ROG  | NOx  | со   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|---|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| ſ | Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

| Quarter | Start Date | End Date  | Maximum Unmitigated ROG + NOX (tons/quarter) | Maximum Mitigated ROG + NOX (tons/quarter) |
|---------|------------|-----------|----------------------------------------------|--------------------------------------------|
| 1       | 10-3-2022  | 1-2-2023  | 2.3873                                       | 2.3873                                     |
| 2       | 1-3-2023   | 4-2-2023  | 0.7248                                       | 0.7248                                     |
| 3       | 4-3-2023   | 7-2-2023  | 0.8896                                       | 0.8896                                     |
| 4       | 7-3-2023   | 9-30-2023 | 0.0269                                       | 0.0269                                     |
|         |            | Highest   | 2.3873                                       | 2.3873                                     |

### 2.2 Overall Operational

### Unmitigated Operational

|          | ROG    | NOx             | CO      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O             | CO2e           |
|----------|--------|-----------------|---------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|----------------|----------------|-----------------|-----------------|----------------|
| Category |        |                 |         |                 | ton              | s/yr            |                 |                   |                  |                 |          |                | МТ             | /yr             |                 |                |
| Area     | 0.6087 | 7.5500e-<br>003 | 0.6559  | 3.0000e-<br>005 |                  | 3.6300e-<br>003 | 3.6300e-<br>003 |                   | 3.6300e-<br>003  | 3.6300e-<br>003 | 0.0000   | 1.0718         | 1.0718         | 1.0400e-<br>003 | 0.0000          | 1.0978         |
| Energy   | 0.0000 | 0.0000          | 0.0000  | 0.0000          |                  | 0.0000          | 0.0000          | ,                 | 0.0000           | 0.0000          | 0.0000   | 287.2478       | 287.2478       | 0.0000          | 0.0000          | 287.2478       |
| Mobile   | 1.9736 | 2.8181          | 11.5825 | 0.0253          | 1.6573           | 0.0436          | 1.7009          | 0.4535            | 0.0414           | 0.4949          | 0.0000   | 2,341.161<br>2 | 2,341.161<br>2 | 0.1747          | 0.1530          | 2,391.118<br>7 |
| Waste    | n,     |                 |         |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 36.8246  | 0.0000         | 36.8246        | 2.1763          | 0.0000          | 91.2314        |
| Water    | n,     |                 |         |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 1.3896   | 18.1189        | 19.5084        | 0.1427          | 3.3700e-<br>003 | 24.0807        |
| Total    | 2.5822 | 2.8256          | 12.2384 | 0.0253          | 1.6573           | 0.0473          | 1.7045          | 0.4535            | 0.0450           | 0.4985          | 38.2142  | 2,647.599<br>7 | 2,685.813<br>8 | 2.4948          | 0.1564          | 2,794.776<br>4 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 2.2 Overall Operational

### Mitigated Operational

|          | ROG    | NOx             | CO      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O             | CO2e           |
|----------|--------|-----------------|---------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|----------------|----------------|-----------------|-----------------|----------------|
| Category |        |                 |         |                 | ton              | s/yr            |                 |                   |                  |                 |          |                | МТ             | /yr             |                 |                |
| Area     | 0.6087 | 7.5500e-<br>003 | 0.6559  | 3.0000e-<br>005 |                  | 3.6300e-<br>003 | 3.6300e-<br>003 |                   | 3.6300e-<br>003  | 3.6300e-<br>003 | 0.0000   | 1.0718         | 1.0718         | 1.0400e-<br>003 | 0.0000          | 1.0978         |
| Energy   | 0.0000 | 0.0000          | 0.0000  | 0.0000          |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 263.6075       | 263.6075       | 0.0000          | 0.0000          | 263.6075       |
| Mobile   | 1.9736 | 2.8181          | 11.5825 | 0.0253          | 1.6573           | 0.0436          | 1.7009          | 0.4535            | 0.0414           | 0.4949          | 0.0000   | 2,341.161<br>2 | 2,341.161<br>2 | 0.1747          | 0.1530          | 2,391.118<br>7 |
| Waste    | n      |                 |         |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 36.8246  | 0.0000         | 36.8246        | 2.1763          | 0.0000          | 91.2314        |
| Water    | n      |                 |         |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 1.3896   | 18.1189        | 19.5084        | 0.1427          | 3.3700e-<br>003 | 24.0807        |
| Total    | 2.5822 | 2.8256          | 12.2384 | 0.0253          | 1.6573           | 0.0473          | 1.7045          | 0.4535            | 0.0450           | 0.4985          | 38.2142  | 2,623.959<br>4 | 2,662.173<br>5 | 2.4948          | 0.1564          | 2,771.136<br>1 |

|                      | ROG  | NOx  | CO   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.89     | 0.88      | 0.00 | 0.00 | 0.85 |

# **3.0 Construction Detail**

### **Construction Phase**

| Phase<br>Number | Phase Name       | Phase Type       | Start Date | End Date  | Num Days<br>Week | Num Days | Phase Description |
|-----------------|------------------|------------------|------------|-----------|------------------|----------|-------------------|
| 1               | Demolition       | Demolition       | 10/3/2022  | 11/1/2022 | 5                | 22       |                   |
| 2               | Site Preparation | Site Preparation | 10/3/2022  | 11/1/2022 | 5                | 22       |                   |
| 3               | Grading          | Grading          | 10/3/2022  | 11/1/2022 | 5                | 22       |                   |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|   | Water Main Trenching /<br>Undergounding | Trenching             | 11/2/2022 | 1/2/2023 | 5 | 44  |  |
|---|-----------------------------------------|-----------------------|-----------|----------|---|-----|--|
| 5 | Building Construction                   | Building Construction | 12/1/2022 | 6/2/2023 | 5 | 132 |  |
| 6 | Paving                                  | Paving                | 6/3/2023  | 7/4/2023 | 5 | 22  |  |
| 7 | Architectural Coating                   | Architectural Coating | 6/3/2023  | 7/4/2023 | 5 | 22  |  |

#### Acres of Grading (Site Preparation Phase): 33

#### Acres of Grading (Grading Phase): 66

#### Acres of Paving: 2.99

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 49,904; Non-Residential Outdoor: 16,635; Striped Parking Area: 7,894 (Architectural Coating – sqft)

#### OffRoad Equipment

| Phase Name                           | Offroad Equipment Type    | Amount | Usage Hours | Horse Power | Load Factor |
|--------------------------------------|---------------------------|--------|-------------|-------------|-------------|
| Demolition                           | Concrete/Industrial Saws  | 1      | 8.00        | 81          | 0.73        |
| Demolition                           | Excavators                | 3      | 8.00        | 158         | 0.38        |
| Demolition                           | Rubber Tired Dozers       | 2      | 8.00        | 247         | 0.40        |
| Site Preparation                     | Rubber Tired Dozers       | 3      | 8.00        | 247         | 0.40        |
| Site Preparation                     | Tractors/Loaders/Backhoes | 4      | 8.00        | 97          | 0.37        |
| Grading                              | Excavators                | 2      | 8.00        | 158         | 0.38        |
| Grading                              | Graders                   | 1      | 8.00        | 187         | 0.41        |
| Grading                              | Rubber Tired Dozers       | 1      | 8.00        | 247         | 0.40        |
| Grading                              | Scrapers                  | 2      | 8.00        | 367         | 0.48        |
| Grading                              | Tractors/Loaders/Backhoes | 2      | 8.00        | 97          | 0.37        |
| Water Main Trenching / Undergounding | Excavators                | 2      | 8.00        | 158         | 0.38        |
| Water Main Trenching / Undergounding | Graders                   | 1      | 8.00        | 187         | 0.41        |
| Water Main Trenching / Undergounding | Rubber Tired Dozers       | 1      | 8.00        | 247         | 0.40        |
| Water Main Trenching / Undergounding | Scrapers                  | 2      | 8.00        | 367         | 0.48        |
| Water Main Trenching / Undergounding | Tractors/Loaders/Backhoes | 2      | 8.00        | 97          | 0.37        |
| Building Construction                | Cranes                    | 1      | 7.00        | 231         | 0.29        |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Building Construction | Forklifts                 | 3 | 8.00 | 89  | 0.20 |
|-----------------------|---------------------------|---|------|-----|------|
| Building Construction | Generator Sets            | 1 | 8.00 | 84  | 0.74 |
| Building Construction | Tractors/Loaders/Backhoes | 3 | 7.00 | 97  | 0.37 |
| Building Construction | Welders                   | 1 | 8.00 | 46  | 0.45 |
| Paving                | Pavers                    | 2 | 8.00 | 130 | 0.42 |
| Paving                | Paving Equipment          | 2 | 8.00 | 132 | 0.36 |
| Paving                | Rollers                   | 2 | 8.00 | 80  | 0.38 |
| Architectural Coating | Air Compressors           | 1 | 6.00 | 78  | 0.48 |

### Trips and VMT

| Phase Name            | Offroad Equipment<br>Count | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Worker Vehicle<br>Class | Vendor<br>Vehicle Class | Hauling<br>Vehicle Class |
|-----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------|
| Demolition            | 6                          | 15.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Site Preparation      | 7                          | 18.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Grading               | 8                          | 20.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Water Main Trenching  | 8                          | 20.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Building Construction | 9                          | 334.00                | 116.00                | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Paving                | 6                          | 15.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Architectural Coating | 1                          | 67.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Architectural Coating | 1                          | 67.00                 | 0.00                  | 0.00                   | 16.80                 | 6.60                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |

**3.1 Mitigation Measures Construction** 

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.2 Demolition - 2022

### **Unmitigated Construction On-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | МТ        | /yr    |        |         |
| Off-Road | 0.0290 | 0.2829 | 0.2265 | 4.3000e-<br>004 |                  | 0.0137          | 0.0137        |                   | 0.0127           | 0.0127         | 0.0000   | 37.3893   | 37.3893   | 0.0105 | 0.0000 | 37.6518 |
| Total    | 0.0290 | 0.2829 | 0.2265 | 4.3000e-<br>004 |                  | 0.0137          | 0.0137        |                   | 0.0127           | 0.0127         | 0.0000   | 37.3893   | 37.3893   | 0.0105 | 0.0000 | 37.6518 |

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 6.8000e-<br>004 | 5.4000e-<br>004 | 6.5500e-<br>003 | 2.0000e-<br>005 | 2.0700e-<br>003  | 1.0000e-<br>005 | 2.0800e-<br>003 | 5.5000e-<br>004   | 1.0000e-<br>005  | 5.6000e-<br>004 | 0.0000   | 1.6436    | 1.6436    | 4.0000e-<br>005 | 5.0000e-<br>005 | 1.6585 |
| Total    | 6.8000e-<br>004 | 5.4000e-<br>004 | 6.5500e-<br>003 | 2.0000e-<br>005 | 2.0700e-<br>003  | 1.0000e-<br>005 | 2.0800e-<br>003 | 5.5000e-<br>004   | 1.0000e-<br>005  | 5.6000e-<br>004 | 0.0000   | 1.6436    | 1.6436    | 4.0000e-<br>005 | 5.0000e-<br>005 | 1.6585 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.2 Demolition - 2022

#### **Mitigated Construction On-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | МТ        | /yr    |        |         |
| Off-Road | 0.0290 | 0.2829 | 0.2265 | 4.3000e-<br>004 |                  | 0.0137          | 0.0137        |                   | 0.0127           | 0.0127         | 0.0000   | 37.3892   | 37.3892   | 0.0105 | 0.0000 | 37.6518 |
| Total    | 0.0290 | 0.2829 | 0.2265 | 4.3000e-<br>004 |                  | 0.0137          | 0.0137        |                   | 0.0127           | 0.0127         | 0.0000   | 37.3892   | 37.3892   | 0.0105 | 0.0000 | 37.6518 |

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 | -                 |                  |                 |          |           | MT        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 6.8000e-<br>004 | 5.4000e-<br>004 | 6.5500e-<br>003 | 2.0000e-<br>005 | 2.0700e-<br>003  | 1.0000e-<br>005 | 2.0800e-<br>003 | 5.5000e-<br>004   | 1.0000e-<br>005  | 5.6000e-<br>004 | 0.0000   | 1.6436    | 1.6436    | 4.0000e-<br>005 | 5.0000e-<br>005 | 1.6585 |
| Total    | 6.8000e-<br>004 | 5.4000e-<br>004 | 6.5500e-<br>003 | 2.0000e-<br>005 | 2.0700e-<br>003  | 1.0000e-<br>005 | 2.0800e-<br>003 | 5.5000e-<br>004   | 1.0000e-<br>005  | 5.6000e-<br>004 | 0.0000   | 1.6436    | 1.6436    | 4.0000e-<br>005 | 5.0000e-<br>005 | 1.6585 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.3 Site Preparation - 2022

### **Unmitigated Construction On-Site**

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr    |        |         |
| Fugitive Dust |        |        |        |                 | 0.2162           | 0.0000          | 0.2162        | 0.1111            | 0.0000           | 0.1111         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Off-Road      | 0.0349 | 0.3639 | 0.2167 | 4.2000e-<br>004 |                  | 0.0177          | 0.0177        |                   | 0.0163           | 0.0163         | 0.0000   | 36.7833   | 36.7833   | 0.0119 | 0.0000 | 37.0807 |
| Total         | 0.0349 | 0.3639 | 0.2167 | 4.2000e-<br>004 | 0.2162           | 0.0177          | 0.2340        | 0.1111            | 0.0163           | 0.1275         | 0.0000   | 36.7833   | 36.7833   | 0.0119 | 0.0000 | 37.0807 |

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 8.1000e-<br>004 | 6.5000e-<br>004 | 7.8600e-<br>003 | 2.0000e-<br>005 | 2.4800e-<br>003  | 1.0000e-<br>005 | 2.4900e-<br>003 | 6.6000e-<br>004   | 1.0000e-<br>005  | 6.7000e-<br>004 | 0.0000   | 1.9724    | 1.9724    | 5.0000e-<br>005 | 6.0000e-<br>005 | 1.9902 |
| Total    | 8.1000e-<br>004 | 6.5000e-<br>004 | 7.8600e-<br>003 | 2.0000e-<br>005 | 2.4800e-<br>003  | 1.0000e-<br>005 | 2.4900e-<br>003 | 6.6000e-<br>004   | 1.0000e-<br>005  | 6.7000e-<br>004 | 0.0000   | 1.9724    | 1.9724    | 5.0000e-<br>005 | 6.0000e-<br>005 | 1.9902 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.3 Site Preparation - 2022

### **Mitigated Construction On-Site**

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr    |        |         |
| Fugitive Dust |        |        |        |                 | 0.2162           | 0.0000          | 0.2162        | 0.1111            | 0.0000           | 0.1111         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Off-Road      | 0.0349 | 0.3639 | 0.2167 | 4.2000e-<br>004 |                  | 0.0177          | 0.0177        |                   | 0.0163           | 0.0163         | 0.0000   | 36.7833   | 36.7833   | 0.0119 | 0.0000 | 37.0807 |
| Total         | 0.0349 | 0.3639 | 0.2167 | 4.2000e-<br>004 | 0.2162           | 0.0177          | 0.2340        | 0.1111            | 0.0163           | 0.1275         | 0.0000   | 36.7833   | 36.7833   | 0.0119 | 0.0000 | 37.0807 |

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 8.1000e-<br>004 | 6.5000e-<br>004 | 7.8600e-<br>003 | 2.0000e-<br>005 | 2.4800e-<br>003  | 1.0000e-<br>005 | 2.4900e-<br>003 | 6.6000e-<br>004   | 1.0000e-<br>005  | 6.7000e-<br>004 | 0.0000   | 1.9724    | 1.9724    | 5.0000e-<br>005 | 6.0000e-<br>005 | 1.9902 |
| Total    | 8.1000e-<br>004 | 6.5000e-<br>004 | 7.8600e-<br>003 | 2.0000e-<br>005 | 2.4800e-<br>003  | 1.0000e-<br>005 | 2.4900e-<br>003 | 6.6000e-<br>004   | 1.0000e-<br>005  | 6.7000e-<br>004 | 0.0000   | 1.9724    | 1.9724    | 5.0000e-<br>005 | 6.0000e-<br>005 | 1.9902 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.4 Grading - 2022

### **Unmitigated Construction On-Site**

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | МТ        | /yr    |        |         |
| Fugitive Dust |        |        |        |                 | 0.1012           | 0.0000          | 0.1012        | 0.0402            | 0.0000           | 0.0402         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Off-Road      | 0.0399 | 0.4273 | 0.3195 | 6.8000e-<br>004 |                  | 0.0180          | 0.0180        |                   | 0.0166           | 0.0166         | 0.0000   | 59.9881   | 59.9881   | 0.0194 | 0.0000 | 60.4731 |
| Total         | 0.0399 | 0.4273 | 0.3195 | 6.8000e-<br>004 | 0.1012           | 0.0180          | 0.1192        | 0.0402            | 0.0166           | 0.0567         | 0.0000   | 59.9881   | 59.9881   | 0.0194 | 0.0000 | 60.4731 |

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 9.0000e-<br>004 | 7.3000e-<br>004 | 8.7400e-<br>003 | 2.0000e-<br>005 | 2.7600e-<br>003  | 1.0000e-<br>005 | 2.7700e-<br>003 | 7.3000e-<br>004   | 1.0000e-<br>005  | 7.5000e-<br>004 | 0.0000   | 2.1915    | 2.1915    | 6.0000e-<br>005 | 6.0000e-<br>005 | 2.2114 |
| Total    | 9.0000e-<br>004 | 7.3000e-<br>004 | 8.7400e-<br>003 | 2.0000e-<br>005 | 2.7600e-<br>003  | 1.0000e-<br>005 | 2.7700e-<br>003 | 7.3000e-<br>004   | 1.0000e-<br>005  | 7.5000e-<br>004 | 0.0000   | 2.1915    | 2.1915    | 6.0000e-<br>005 | 6.0000e-<br>005 | 2.2114 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.4 Grading - 2022

### **Mitigated Construction On-Site**

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr    |        |         |
| Fugitive Dust |        |        |        |                 | 0.1012           | 0.0000          | 0.1012        | 0.0402            | 0.0000           | 0.0402         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Off-Road      | 0.0399 | 0.4273 | 0.3195 | 6.8000e-<br>004 |                  | 0.0180          | 0.0180        |                   | 0.0166           | 0.0166         | 0.0000   | 59.9880   | 59.9880   | 0.0194 | 0.0000 | 60.4730 |
| Total         | 0.0399 | 0.4273 | 0.3195 | 6.8000e-<br>004 | 0.1012           | 0.0180          | 0.1192        | 0.0402            | 0.0166           | 0.0567         | 0.0000   | 59.9880   | 59.9880   | 0.0194 | 0.0000 | 60.4730 |

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 9.0000e-<br>004 | 7.3000e-<br>004 | 8.7400e-<br>003 | 2.0000e-<br>005 | 2.7600e-<br>003  | 1.0000e-<br>005 | 2.7700e-<br>003 | 7.3000e-<br>004   | 1.0000e-<br>005  | 7.5000e-<br>004 | 0.0000   | 2.1915    | 2.1915    | 6.0000e-<br>005 | 6.0000e-<br>005 | 2.2114 |
| Total    | 9.0000e-<br>004 | 7.3000e-<br>004 | 8.7400e-<br>003 | 2.0000e-<br>005 | 2.7600e-<br>003  | 1.0000e-<br>005 | 2.7700e-<br>003 | 7.3000e-<br>004   | 1.0000e-<br>005  | 7.5000e-<br>004 | 0.0000   | 2.1915    | 2.1915    | 6.0000e-<br>005 | 6.0000e-<br>005 | 2.2114 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.5 Water Main Trenching / Undergounding - 2022

### Unmitigated Construction On-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr    |        |          |
| Off-Road | 0.0779 | 0.8351 | 0.6244 | 1.3300e-<br>003 |                  | 0.0352          | 0.0352        |                   | 0.0323           | 0.0323         | 0.0000   | 117.2494  | 117.2494  | 0.0379 | 0.0000 | 118.1974 |
| Total    | 0.0779 | 0.8351 | 0.6244 | 1.3300e-<br>003 |                  | 0.0352          | 0.0352        |                   | 0.0323           | 0.0323         | 0.0000   | 117.2494  | 117.2494  | 0.0379 | 0.0000 | 118.1974 |

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 1.7600e-<br>003 | 1.4200e-<br>003 | 0.0171 | 5.0000e-<br>005 | 5.3900e-<br>003  | 3.0000e-<br>005 | 5.4200e-<br>003 | 1.4300e-<br>003   | 3.0000e-<br>005  | 1.4600e-<br>003 | 0.0000   | 4.2834    | 4.2834    | 1.2000e-<br>004 | 1.2000e-<br>004 | 4.3222 |
| Total    | 1.7600e-<br>003 | 1.4200e-<br>003 | 0.0171 | 5.0000e-<br>005 | 5.3900e-<br>003  | 3.0000e-<br>005 | 5.4200e-<br>003 | 1.4300e-<br>003   | 3.0000e-<br>005  | 1.4600e-<br>003 | 0.0000   | 4.2834    | 4.2834    | 1.2000e-<br>004 | 1.2000e-<br>004 | 4.3222 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.5 Water Main Trenching / Undergounding - 2022

### **Mitigated Construction On-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | МТ        | /yr    |        |          |
| Off-Road | 0.0779 | 0.8351 | 0.6244 | 1.3300e-<br>003 |                  | 0.0352          | 0.0352        |                   | 0.0323           | 0.0323         | 0.0000   | 117.2493  | 117.2493  | 0.0379 | 0.0000 | 118.1973 |
| Total    | 0.0779 | 0.8351 | 0.6244 | 1.3300e-<br>003 |                  | 0.0352          | 0.0352        |                   | 0.0323           | 0.0323         | 0.0000   | 117.2493  | 117.2493  | 0.0379 | 0.0000 | 118.1973 |

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 1.7600e-<br>003 | 1.4200e-<br>003 | 0.0171 | 5.0000e-<br>005 | 5.3900e-<br>003  | 3.0000e-<br>005 | 5.4200e-<br>003 | 1.4300e-<br>003   | 3.0000e-<br>005  | 1.4600e-<br>003 | 0.0000   | 4.2834    | 4.2834    | 1.2000e-<br>004 | 1.2000e-<br>004 | 4.3222 |
| Total    | 1.7600e-<br>003 | 1.4200e-<br>003 | 0.0171 | 5.0000e-<br>005 | 5.3900e-<br>003  | 3.0000e-<br>005 | 5.4200e-<br>003 | 1.4300e-<br>003   | 3.0000e-<br>005  | 1.4600e-<br>003 | 0.0000   | 4.2834    | 4.2834    | 1.2000e-<br>004 | 1.2000e-<br>004 | 4.3222 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.5 Water Main Trenching / Undergounding - 2023

### Unmitigated Construction On-Site

|          | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |        |        |
| Chilloud | 1.6600e-<br>003 | 0.0173 | 0.0140 | 3.0000e-<br>005 |                  | 7.1000e-<br>004 | 7.1000e-<br>004 | -<br>             | 6.6000e-<br>004  | 6.6000e-<br>004 | 0.0000   | 2.7268    | 2.7268    | 8.8000e-<br>004 | 0.0000 | 2.7488 |
| Total    | 1.6600e-<br>003 | 0.0173 | 0.0140 | 3.0000e-<br>005 |                  | 7.1000e-<br>004 | 7.1000e-<br>004 |                   | 6.6000e-<br>004  | 6.6000e-<br>004 | 0.0000   | 2.7268    | 2.7268    | 8.8000e-<br>004 | 0.0000 | 2.7488 |

|          | ROG             | NOx             | CO              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|-----------------|-----------------|-----------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|--------|--------|--------|
| Category |                 |                 |                 |        | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000 | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000 | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 4.0000e-<br>005 | 3.0000e-<br>005 | 3.6000e-<br>004 | 0.0000 | 1.3000e-<br>004  | 0.0000          | 1.3000e-<br>004 | 3.0000e-<br>005   | 0.0000           | 3.0000e-<br>005 | 0.0000   | 0.0964    | 0.0964    | 0.0000 | 0.0000 | 0.0972 |
| Total    | 4.0000e-<br>005 | 3.0000e-<br>005 | 3.6000e-<br>004 | 0.0000 | 1.3000e-<br>004  | 0.0000          | 1.3000e-<br>004 | 3.0000e-<br>005   | 0.0000           | 3.0000e-<br>005 | 0.0000   | 0.0964    | 0.0964    | 0.0000 | 0.0000 | 0.0972 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.5 Water Main Trenching / Undergounding - 2023

### **Mitigated Construction On-Site**

|             | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category    |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |        |        |
| - Chi ricuu | 1.6600e-<br>003 | 0.0173 | 0.0140 | 3.0000e-<br>005 |                  | 7.1000e-<br>004 | 7.1000e-<br>004 | 1<br>1<br>1       | 6.6000e-<br>004  | 6.6000e-<br>004 | 0.0000   | 2.7268    | 2.7268    | 8.8000e-<br>004 | 0.0000 | 2.7488 |
| Total       | 1.6600e-<br>003 | 0.0173 | 0.0140 | 3.0000e-<br>005 |                  | 7.1000e-<br>004 | 7.1000e-<br>004 |                   | 6.6000e-<br>004  | 6.6000e-<br>004 | 0.0000   | 2.7268    | 2.7268    | 8.8000e-<br>004 | 0.0000 | 2.7488 |

|          | ROG             | NOx             | CO              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|-----------------|-----------------|-----------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|--------|--------|--------|
| Category |                 |                 |                 |        | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000 | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000 | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 4.0000e-<br>005 | 3.0000e-<br>005 | 3.6000e-<br>004 | 0.0000 | 1.3000e-<br>004  | 0.0000          | 1.3000e-<br>004 | 3.0000e-<br>005   | 0.0000           | 3.0000e-<br>005 | 0.0000   | 0.0964    | 0.0964    | 0.0000 | 0.0000 | 0.0972 |
| Total    | 4.0000e-<br>005 | 3.0000e-<br>005 | 3.6000e-<br>004 | 0.0000 | 1.3000e-<br>004  | 0.0000          | 1.3000e-<br>004 | 3.0000e-<br>005   | 0.0000           | 3.0000e-<br>005 | 0.0000   | 0.0964    | 0.0964    | 0.0000 | 0.0000 | 0.0972 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.6 Building Construction - 2022

### **Unmitigated Construction On-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|----------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category |        |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |        |         |
|          | 0.0188 | 0.1718 | 0.1800 | 3.0000e-<br>004 |                  | 8.9000e-<br>003 | 8.9000e-<br>003 |                   | 8.3700e-<br>003  | 8.3700e-<br>003 | 0.0000   | 25.4898   | 25.4898   | 6.1100e-<br>003 | 0.0000 | 25.6424 |
| Total    | 0.0188 | 0.1718 | 0.1800 | 3.0000e-<br>004 |                  | 8.9000e-<br>003 | 8.9000e-<br>003 |                   | 8.3700e-<br>003  | 8.3700e-<br>003 | 0.0000   | 25.4898   | 25.4898   | 6.1100e-<br>003 | 0.0000 | 25.6424 |

|          | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e    |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------|
| Category |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |                 |         |
| Hauling  | 0.0000          | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000  |
| Vendor   | 2.1200e-<br>003 | 0.0570 | 0.0205 | 2.3000e-<br>004 | 7.7000e-<br>003  | 6.4000e-<br>004 | 8.3400e-<br>003 | 2.2200e-<br>003   | 6.1000e-<br>004  | 2.8300e-<br>003 | 0.0000   | 22.2622   | 22.2622   | 6.0000e-<br>004 | 3.3000e-<br>003 | 23.2600 |
| Worker   | 0.0151          | 0.0121 | 0.1459 | 4.0000e-<br>004 | 0.0460           | 2.4000e-<br>004 | 0.0463          | 0.0122            | 2.2000e-<br>004  | 0.0125          | 0.0000   | 36.5983   | 36.5983   | 9.8000e-<br>004 | 1.0300e-<br>003 | 36.9298 |
| Total    | 0.0172          | 0.0691 | 0.1664 | 6.3000e-<br>004 | 0.0537           | 8.8000e-<br>004 | 0.0546          | 0.0145            | 8.3000e-<br>004  | 0.0153          | 0.0000   | 58.8605   | 58.8605   | 1.5800e-<br>003 | 4.3300e-<br>003 | 60.1898 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.6 Building Construction - 2022

### **Mitigated Construction On-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|----------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category |        |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |         |
| Off-Road | 0.0188 | 0.1718 | 0.1800 | 3.0000e-<br>004 |                  | 8.9000e-<br>003 | 8.9000e-<br>003 |                   | 8.3700e-<br>003  | 8.3700e-<br>003 | 0.0000   | 25.4898   | 25.4898   | 6.1100e-<br>003 | 0.0000 | 25.6424 |
| Total    | 0.0188 | 0.1718 | 0.1800 | 3.0000e-<br>004 |                  | 8.9000e-<br>003 | 8.9000e-<br>003 |                   | 8.3700e-<br>003  | 8.3700e-<br>003 | 0.0000   | 25.4898   | 25.4898   | 6.1100e-<br>003 | 0.0000 | 25.6424 |

|          | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e    |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------|
| Category |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |                 |         |
| Hauling  | 0.0000          | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000  |
| Vendor   | 2.1200e-<br>003 | 0.0570 | 0.0205 | 2.3000e-<br>004 | 7.7000e-<br>003  | 6.4000e-<br>004 | 8.3400e-<br>003 | 2.2200e-<br>003   | 6.1000e-<br>004  | 2.8300e-<br>003 | 0.0000   | 22.2622   | 22.2622   | 6.0000e-<br>004 | 3.3000e-<br>003 | 23.2600 |
| Worker   | 0.0151          | 0.0121 | 0.1459 | 4.0000e-<br>004 | 0.0460           | 2.4000e-<br>004 | 0.0463          | 0.0122            | 2.2000e-<br>004  | 0.0125          | 0.0000   | 36.5983   | 36.5983   | 9.8000e-<br>004 | 1.0300e-<br>003 | 36.9298 |
| Total    | 0.0172          | 0.0691 | 0.1664 | 6.3000e-<br>004 | 0.0537           | 8.8000e-<br>004 | 0.0546          | 0.0145            | 8.3000e-<br>004  | 0.0153          | 0.0000   | 58.8605   | 58.8605   | 1.5800e-<br>003 | 4.3300e-<br>003 | 60.1898 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.6 Building Construction - 2023

### **Unmitigated Construction On-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr    |        |          |
|          | 0.0865 | 0.7912 | 0.8934 | 1.4800e-<br>003 |                  | 0.0385          | 0.0385        |                   | 0.0362           | 0.0362         | 0.0000   | 127.4926  | 127.4926  | 0.0303 | 0.0000 | 128.2508 |
| Total    | 0.0865 | 0.7912 | 0.8934 | 1.4800e-<br>003 |                  | 0.0385          | 0.0385        |                   | 0.0362           | 0.0362         | 0.0000   | 127.4926  | 127.4926  | 0.0303 | 0.0000 | 128.2508 |

|          | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |                 |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | МТ        | /yr             |                 |          |
| Hauling  | 0.0000          | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 7.0900e-<br>003 | 0.2288 | 0.0942 | 1.1000e-<br>003 | 0.0385           | 1.6100e-<br>003 | 0.0401        | 0.0111            | 1.5400e-<br>003  | 0.0127         | 0.0000   | 106.8369  | 106.8369  | 2.7800e-<br>003 | 0.0158          | 111.6130 |
| Worker   | 0.0696          | 0.0532 | 0.6675 | 1.9300e-<br>003 | 0.2302           | 1.1400e-<br>003 | 0.2313        | 0.0611            | 1.0500e-<br>003  | 0.0622         | 0.0000   | 177.1027  | 177.1027  | 4.4000e-<br>003 | 4.7300e-<br>003 | 178.6222 |
| Total    | 0.0767          | 0.2820 | 0.7617 | 3.0300e-<br>003 | 0.2687           | 2.7500e-<br>003 | 0.2714        | 0.0722            | 2.5900e-<br>003  | 0.0748         | 0.0000   | 283.9396  | 283.9396  | 7.1800e-<br>003 | 0.0205          | 290.2352 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.6 Building Construction - 2023

### **Mitigated Construction On-Site**

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | МТ        | /yr    |        |          |
| Off-Road | 0.0865 | 0.7912 | 0.8934 | 1.4800e-<br>003 |                  | 0.0385          | 0.0385        |                   | 0.0362           | 0.0362         | 0.0000   | 127.4925  | 127.4925  | 0.0303 | 0.0000 | 128.2507 |
| Total    | 0.0865 | 0.7912 | 0.8934 | 1.4800e-<br>003 |                  | 0.0385          | 0.0385        |                   | 0.0362           | 0.0362         | 0.0000   | 127.4925  | 127.4925  | 0.0303 | 0.0000 | 128.2507 |

|          | ROG             | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category |                 |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr             |                 |          |
| Hauling  | 0.0000          | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000   |
| Vendor   | 7.0900e-<br>003 | 0.2288 | 0.0942 | 1.1000e-<br>003 | 0.0385           | 1.6100e-<br>003 | 0.0401        | 0.0111            | 1.5400e-<br>003  | 0.0127         | 0.0000   | 106.8369  | 106.8369  | 2.7800e-<br>003 | 0.0158          | 111.6130 |
| Worker   | 0.0696          | 0.0532 | 0.6675 | 1.9300e-<br>003 | 0.2302           | 1.1400e-<br>003 | 0.2313        | 0.0611            | 1.0500e-<br>003  | 0.0622         | 0.0000   | 177.1027  | 177.1027  | 4.4000e-<br>003 | 4.7300e-<br>003 | 178.6222 |
| Total    | 0.0767          | 0.2820 | 0.7617 | 3.0300e-<br>003 | 0.2687           | 2.7500e-<br>003 | 0.2714        | 0.0722            | 2.5900e-<br>003  | 0.0748         | 0.0000   | 283.9396  | 283.9396  | 7.1800e-<br>003 | 0.0205          | 290.2352 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.7 Paving - 2023

**Unmitigated Construction On-Site** 

|          | ROG             | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | '/yr            |        |         |
| Off-Road | 0.0114          | 0.1121 | 0.1604 | 2.5000e-<br>004 |                  | 5.6100e-<br>003 | 5.6100e-<br>003 |                   | 5.1600e-<br>003  | 5.1600e-<br>003 | 0.0000   | 22.0296   | 22.0296   | 7.1200e-<br>003 | 0.0000 | 22.2077 |
| Paving   | 3.9200e-<br>003 |        |        |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Total    | 0.0153          | 0.1121 | 0.1604 | 2.5000e-<br>004 |                  | 5.6100e-<br>003 | 5.6100e-<br>003 |                   | 5.1600e-<br>003  | 5.1600e-<br>003 | 0.0000   | 22.0296   | 22.0296   | 7.1200e-<br>003 | 0.0000 | 22.2077 |

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 6.3000e-<br>004 | 4.8000e-<br>004 | 6.0000e-<br>003 | 2.0000e-<br>005 | 2.0700e-<br>003  | 1.0000e-<br>005 | 2.0800e-<br>003 | 5.5000e-<br>004   | 1.0000e-<br>005  | 5.6000e-<br>004 | 0.0000   | 1.5907    | 1.5907    | 4.0000e-<br>005 | 4.0000e-<br>005 | 1.6044 |
| Total    | 6.3000e-<br>004 | 4.8000e-<br>004 | 6.0000e-<br>003 | 2.0000e-<br>005 | 2.0700e-<br>003  | 1.0000e-<br>005 | 2.0800e-<br>003 | 5.5000e-<br>004   | 1.0000e-<br>005  | 5.6000e-<br>004 | 0.0000   | 1.5907    | 1.5907    | 4.0000e-<br>005 | 4.0000e-<br>005 | 1.6044 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.7 Paving - 2023

### **Mitigated Construction On-Site**

|          | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|----------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |        |         |
| Off-Road | 0.0114          | 0.1121 | 0.1604 | 2.5000e-<br>004 |                  | 5.6100e-<br>003 | 5.6100e-<br>003 |                   | 5.1600e-<br>003  | 5.1600e-<br>003 | 0.0000   | 22.0295   | 22.0295   | 7.1200e-<br>003 | 0.0000 | 22.2077 |
| i aving  | 3.9200e-<br>003 |        |        |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Total    | 0.0153          | 0.1121 | 0.1604 | 2.5000e-<br>004 |                  | 5.6100e-<br>003 | 5.6100e-<br>003 |                   | 5.1600e-<br>003  | 5.1600e-<br>003 | 0.0000   | 22.0295   | 22.0295   | 7.1200e-<br>003 | 0.0000 | 22.2077 |

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |                 |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000 |
| Worker   | 6.3000e-<br>004 | 4.8000e-<br>004 | 6.0000e-<br>003 | 2.0000e-<br>005 | 2.0700e-<br>003  | 1.0000e-<br>005 | 2.0800e-<br>003 | 5.5000e-<br>004   | 1.0000e-<br>005  | 5.6000e-<br>004 | 0.0000   | 1.5907    | 1.5907    | 4.0000e-<br>005 | 4.0000e-<br>005 | 1.6044 |
| Total    | 6.3000e-<br>004 | 4.8000e-<br>004 | 6.0000e-<br>003 | 2.0000e-<br>005 | 2.0700e-<br>003  | 1.0000e-<br>005 | 2.0800e-<br>003 | 5.5000e-<br>004   | 1.0000e-<br>005  | 5.6000e-<br>004 | 0.0000   | 1.5907    | 1.5907    | 4.0000e-<br>005 | 4.0000e-<br>005 | 1.6044 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 3.8 Architectural Coating - 2023

### **Unmitigated Construction On-Site**

|                 | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5     | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-----------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-----------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category        |                 |        |        |                 | ton              | s/yr            |                 |                       |                  |                 |          |           | МТ        | /yr             |        |        |
| Archit. Coating | 0.2588          |        |        |                 |                  | 0.0000          | 0.0000          | -<br>-<br>-<br>-<br>- | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Off-Road        | 2.1100e-<br>003 | 0.0143 | 0.0199 | 3.0000e-<br>005 |                  | 7.8000e-<br>004 | 7.8000e-<br>004 |                       | 7.8000e-<br>004  | 7.8000e-<br>004 | 0.0000   | 2.8086    | 2.8086    | 1.7000e-<br>004 | 0.0000 | 2.8128 |
| Total           | 0.2609          | 0.0143 | 0.0199 | 3.0000e-<br>005 |                  | 7.8000e-<br>004 | 7.8000e-<br>004 |                       | 7.8000e-<br>004  | 7.8000e-<br>004 | 0.0000   | 2.8086    | 2.8086    | 1.7000e-<br>004 | 0.0000 | 2.8128 |

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e    |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------|
| Category |                 |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |                 |         |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000  |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000  |
| Worker   | 5.5900e-<br>003 | 4.2700e-<br>003 | 0.0536 | 1.5000e-<br>004 | 0.0345           | 9.0000e-<br>005 | 0.0346        | 8.8300e-<br>003   | 8.0000e-<br>005  | 8.9200e-<br>003 | 0.0000   | 14.2106   | 14.2106   | 3.5000e-<br>004 | 3.8000e-<br>004 | 14.3326 |
| Total    | 5.5900e-<br>003 | 4.2700e-<br>003 | 0.0536 | 1.5000e-<br>004 | 0.0345           | 9.0000e-<br>005 | 0.0346        | 8.8300e-<br>003   | 8.0000e-<br>005  | 8.9200e-<br>003 | 0.0000   | 14.2106   | 14.2106   | 3.5000e-<br>004 | 3.8000e-<br>004 | 14.3326 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 3.8 Architectural Coating - 2023

### **Mitigated Construction On-Site**

|                 | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-----------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category        |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | МТ        | /yr             |        |        |
| Archit. Coating | 0.2588          |        |        |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Off-Road        | 2.1100e-<br>003 | 0.0143 | 0.0199 | 3.0000e-<br>005 |                  | 7.8000e-<br>004 | 7.8000e-<br>004 |                   | 7.8000e-<br>004  | 7.8000e-<br>004 | 0.0000   | 2.8086    | 2.8086    | 1.7000e-<br>004 | 0.0000 | 2.8128 |
| Total           | 0.2609          | 0.0143 | 0.0199 | 3.0000e-<br>005 |                  | 7.8000e-<br>004 | 7.8000e-<br>004 |                   | 7.8000e-<br>004  | 7.8000e-<br>004 | 0.0000   | 2.8086    | 2.8086    | 1.7000e-<br>004 | 0.0000 | 2.8128 |

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e    |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------|
| Category |                 |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |                 |         |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000  |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000          | 0.0000  |
| Worker   | 5.5900e-<br>003 | 4.2700e-<br>003 | 0.0536 | 1.5000e-<br>004 | 0.0345           | 9.0000e-<br>005 | 0.0346        | 8.8300e-<br>003   | 8.0000e-<br>005  | 8.9200e-<br>003 | 0.0000   | 14.2106   | 14.2106   | 3.5000e-<br>004 | 3.8000e-<br>004 | 14.3326 |
| Total    | 5.5900e-<br>003 | 4.2700e-<br>003 | 0.0536 | 1.5000e-<br>004 | 0.0345           | 9.0000e-<br>005 | 0.0346        | 8.8300e-<br>003   | 8.0000e-<br>005  | 8.9200e-<br>003 | 0.0000   | 14.2106   | 14.2106   | 3.5000e-<br>004 | 3.8000e-<br>004 | 14.3326 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 4.0 Operational Detail - Mobile

### 4.1 Mitigation Measures Mobile

|             | ROG    | NOx    | со      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|-------------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category    |        |        |         |        | ton              | s/yr            |               |                   |                  |                |          |                | МТ             | /yr    |        |                |
| Mitigated   | 1.9736 | 2.8181 | 11.5825 | 0.0253 | 1.6573           | 0.0436          | 1.7009        | 0.4535            | 0.0414           | 0.4949         | 0.0000   | 2,341.161<br>2 | 2,341.161<br>2 | 0.1747 | 0.1530 | 2,391.118<br>7 |
| Unmitigated | 1.9736 | 2.8181 | 11.5825 | 0.0253 | 1.6573           | 0.0436          | 1.7009        | 0.4535            | 0.0414           | 0.4949         | 0.0000   | 2,341.161<br>2 | 2,341.161<br>2 | 0.1747 | 0.1530 | 2,391.118<br>7 |

### **4.2 Trip Summary Information**

|                                      | Avei     | age Daily Trip Ra | ite      | Unmitigated | Mitigated  |
|--------------------------------------|----------|-------------------|----------|-------------|------------|
| Land Use                             | Weekday  | Saturday          | Sunday   | Annual VMT  | Annual VMT |
| Automobile Care Center               | 0.00     | 0.00              | 0.00     |             |            |
| City Park                            | 0.00     | 0.00              | 0.00     |             |            |
| Convenience Market (24 Hour)         | 0.00     | 0.00              | 0.00     |             |            |
| Fast Food Restaurant with Drive Thru | 0.00     | 0.00              | 0.00     |             |            |
| Gasoline/Service Station             | 5,326.00 | 5,326.00          | 5326.00  | 3,528,368   | 3,528,368  |
| Mobile Home Park                     | 237.60   | 237.60            | 237.60   | 678,819     | 678,819    |
| Other Asphalt Surfaces               | 0.00     | 0.00              | 0.00     |             |            |
| Parking Lot                          | 0.00     | 0.00              | 0.00     |             |            |
| Total                                | 5,563.60 | 5,563.60          | 5,563.60 | 4,207,187   | 4,207,187  |

**4.3 Trip Type Information** 

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                                 |            | Miles      |             |            | Trip %     |             |         | Trip Purpos | e %     |
|---------------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------|
| Land Use                        | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted    | Pass-by |
| Automobile Care Center          | 14.70      | 6.60       | 6.60        | 33.00      | 48.00      | 19.00       | 21      | 51          | 28      |
| City Park                       | 14.70      | 6.60       | 6.60        | 33.00      | 48.00      | 19.00       | 66      | 28          | 6       |
| Convenience Market (24 Hour)    | 14.70      | 6.60       | 6.60        | 0.90       | 80.10      | 19.00       | 24      | 15          | 61      |
| Fast Food Restaurant with Drive | 14.70      | 6.60       | 6.60        | 2.20       | 78.80      | 19.00       | 29      | 21          | 50      |
| Gasoline/Service Station        | 0.00       | 1.82       | 0.00        | 0.00       | 100.00     | 0.00        | 100     | 0           | 0       |
| Mobile Home Park                | 14.70      | 6.60       | 6.60        | 62.00      | 19.00      | 19.00       | 58      | 38          | 4       |
| Other Asphalt Surfaces          | 14.70      | 6.60       | 6.60        | 0.00       | 0.00       | 0.00        | 0       | 0           | 0       |
| Parking Lot                     | 14.70      | 6.60       | 6.60        | 0.00       | 0.00       | 0.00        | 0       | 0           | 0       |

#### 4.4 Fleet Mix

| Land Use                                | LDA      | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | MH       |
|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Automobile Care Center                  | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| City Park                               | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Convenience Market (24 Hour)            | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Fast Food Restaurant with Drive<br>Thru | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Gasoline/Service Station                | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Mobile Home Park                        | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 |
| Other Asphalt Surfaces                  | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |
| Parking Lot                             | 0.537785 | 0.055838 | 0.172353 | 0.139003 | 0.027005 | 0.007196 | 0.011392 | 0.017285 | 0.000559 | 0.000254 | 0.025303 | 0.000954 | 0.005071 |

### 5.0 Energy Detail

Historical Energy Use: N

### 5.1 Mitigation Measures Energy

Kilowatt Hours of Renewable Electricity Generated

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|                            | ROG    | NOx    | со     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------|
| Category                   |        |        |        |        | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr    |        |          |
| Electricity<br>Mitigated   |        |        |        |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 263.6075  | 263.6075  | 0.0000 | 0.0000 | 263.6075 |
| Electricity<br>Unmitigated |        |        |        |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 287.2478  | 287.2478  | 0.0000 | 0.0000 | 287.2478 |
| NaturalGas<br>Mitigated    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| NaturalGas<br>Unmitigated  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 5.2 Energy by Land Use - NaturalGas

### **Unmitigated**

|                                            | NaturalGa<br>s Use | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|--------------------------------------------|--------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|--------|
| Land Use                                   | kBTU/yr            |        |        |        |        | ton              | s/yr            |               |                   |                  |                |          |           | МТ        | '/yr   |        |        |
| Automobile Care<br>Center                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| City Park                                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | <br> <br> <br>   | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Convenience<br>Market (24 Hour)            | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | <br> <br> <br>   | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Fast Food<br>Restaurant with<br>Drive Thru | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Gasoline/Service<br>Station                | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Mobile Home<br>Park                        | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Other Asphalt<br>Surfaces                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Parking Lot                                | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                                      |                    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 5.2 Energy by Land Use - NaturalGas

### Mitigated

|                                            | NaturalGa<br>s Use | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|--------------------------------------------|--------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|--------|
| Land Use                                   | kBTU/yr            |        |        |        |        | ton              | s/yr            |               |                   |                  |                |          |           | ΜT        | 7/yr   |        |        |
| Automobile Care<br>Center                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| City Park                                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Convenience<br>Market (24 Hour)            | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Fast Food<br>Restaurant with<br>Drive Thru | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Gasoline/Service<br>Station                | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Mobile Home<br>Park                        | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Other Asphalt<br>Surfaces                  | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Parking Lot                                | 0                  | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                                      |                    | 0.0000 | 0.0000 | 0.0000 | 0.0000 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

Page 35 of 45

Love's Truck Stop Apple Valley - San Bernardino-Mojave Desert County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

# 5.3 Energy by Land Use - Electricity

**Unmitigated** 

|                                            | Electricity<br>Use | Total CO2 | CH4    | N2O    | CO2e     |
|--------------------------------------------|--------------------|-----------|--------|--------|----------|
| Land Use                                   | kWh/yr             |           | MT     | ī/yr   |          |
| Automobile Care<br>Center                  | 268353             | 42.7248   | 0.0000 | 0.0000 | 42.7248  |
| City Park                                  | 0                  | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Convenience<br>Market (24 Hour)            | 165248             | 26.3093   | 0.0000 | 0.0000 | 26.3093  |
| Fast Food<br>Restaurant with<br>Drive Thru | 384317             | 61.1874   | 0.0000 | 0.0000 | 61.1874  |
| Gasoline/Service<br>Station                | 68681.5            | 10.9349   | 0.0000 | 0.0000 | 10.9349  |
| Mobile Home<br>Park                        | 891977             | 142.0125  | 0.0000 | 0.0000 | 142.0125 |
| Other Asphalt<br>Surfaces                  | 0                  | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Parking Lot                                | 25620              | 4.0790    | 0.0000 | 0.0000 | 4.0790   |
| Total                                      |                    | 287.2478  | 0.0000 | 0.0000 | 287.2478 |

Page 36 of 45

Love's Truck Stop Apple Valley - San Bernardino-Mojave Desert County, Annual

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 5.3 Energy by Land Use - Electricity

### Mitigated

|                                            | Electricity<br>Use | Total CO2 | CH4    | N2O    | CO2e     |
|--------------------------------------------|--------------------|-----------|--------|--------|----------|
| Land Use                                   | kWh/yr             |           | MT     | /yr    |          |
| Automobile Care<br>Center                  | 249793             | 39.7698   | 0.0000 | 0.0000 | 39.7698  |
| City Park                                  | -18560.5           | -2.9550   | 0.0000 | 0.0000 | -2.9550  |
| Convenience<br>Market (24 Hour)            | 146688             | 23.3543   | 0.0000 | 0.0000 | 23.3543  |
| Fast Food<br>Restaurant with<br>Drive Thru | 365756             | 58.2324   | 0.0000 | 0.0000 | 58.2324  |
| Gasoline/Service<br>Station                | 50121              | 7.9798    | 0.0000 | 0.0000 | 7.9798   |
| Mobile Home<br>Park                        | 873416             | 139.0574  | 0.0000 | 0.0000 | 139.0574 |
| Other Asphalt<br>Surfaces                  | -18560.5           | -2.9550   | 0.0000 | 0.0000 | -2.9550  |
| Parking Lot                                | 7059.5             | 1.1240    | 0.0000 | 0.0000 | 1.1240   |
| Total                                      |                    | 263.6075  | 0.0000 | 0.0000 | 263.6075 |

# 6.0 Area Detail

#### 6.1 Mitigation Measures Area

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|             | ROG    | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-------------|--------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category    |        |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Mitigated   | 0.6087 | 7.5500e-<br>003 | 0.6559 | 3.0000e-<br>005 |                  | 3.6300e-<br>003 | 3.6300e-<br>003 |                   | 3.6300e-<br>003  | 3.6300e-<br>003 | 0.0000   | 1.0718    | 1.0718    | 1.0400e-<br>003 | 0.0000 | 1.0978 |
| Unmitigated | 0.6087 | 7.5500e-<br>003 | 0.6559 | 3.0000e-<br>005 |                  | 3.6300e-<br>003 | 3.6300e-<br>003 |                   | 3.6300e-<br>003  | 3.6300e-<br>003 | 0.0000   | 1.0718    | 1.0718    | 1.0400e-<br>003 | 0.0000 | 1.0978 |

# 6.2 Area by SubCategory

<u>Unmitigated</u>

|                          | ROG     | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|--------------------------|---------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| SubCategory              | tons/yr |                 |        |                 |                  |                 |                 | MT/yr             |                  |                 |          |           |           |                 |        |        |
| Architectural<br>Coating | 0.0333  |                 |        |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Consumer<br>Products     | 0.5555  |                 |        |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Hearth                   | 0.0000  | 0.0000          | 0.0000 | 0.0000          |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Landscaping              | 0.0199  | 7.5500e-<br>003 | 0.6559 | 3.0000e-<br>005 |                  | 3.6300e-<br>003 | 3.6300e-<br>003 |                   | 3.6300e-<br>003  | 3.6300e-<br>003 | 0.0000   | 1.0718    | 1.0718    | 1.0400e-<br>003 | 0.0000 | 1.0978 |
| Total                    | 0.6087  | 7.5500e-<br>003 | 0.6559 | 3.0000e-<br>005 |                  | 3.6300e-<br>003 | 3.6300e-<br>003 |                   | 3.6300e-<br>003  | 3.6300e-<br>003 | 0.0000   | 1.0718    | 1.0718    | 1.0400e-<br>003 | 0.0000 | 1.0978 |

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 6.2 Area by SubCategory

### Mitigated

|                          | ROG     | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|--------------------------|---------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| SubCategory              | tons/yr |                 |        |                 |                  |                 |                 |                   | MT/yr            |                 |          |           |           |                 |        |        |
| Architectural<br>Coating | 0.0333  |                 |        |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Consumer<br>Products     | 0.5555  |                 |        |                 |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Hearth                   | 0.0000  | 0.0000          | 0.0000 | 0.0000          |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Landscaping              | 0.0199  | 7.5500e-<br>003 | 0.6559 | 3.0000e-<br>005 |                  | 3.6300e-<br>003 | 3.6300e-<br>003 | 1<br>1<br>1       | 3.6300e-<br>003  | 3.6300e-<br>003 | 0.0000   | 1.0718    | 1.0718    | 1.0400e-<br>003 | 0.0000 | 1.0978 |
| Total                    | 0.6087  | 7.5500e-<br>003 | 0.6559 | 3.0000e-<br>005 |                  | 3.6300e-<br>003 | 3.6300e-<br>003 |                   | 3.6300e-<br>003  | 3.6300e-<br>003 | 0.0000   | 1.0718    | 1.0718    | 1.0400e-<br>003 | 0.0000 | 1.0978 |

# 7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

|             | Total CO2 | CH4    | N2O             | CO2e    |  |  |  |
|-------------|-----------|--------|-----------------|---------|--|--|--|
| Category    | MT/yr     |        |                 |         |  |  |  |
| iningutou   | 19.5084   | 0.1427 | 3.3700e-<br>003 | 24.0807 |  |  |  |
| Grinnigatou | 19.5084   | 0.1427 | 3.3700e-<br>003 | 24.0807 |  |  |  |

Page 40 of 45

Love's Truck Stop Apple Valley - San Bernardino-Mojave Desert County, Annual

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 7.2 Water by Land Use

<u>Unmitigated</u>

|                                            | Indoor/Out<br>door Use | Total CO2 | CH4    | N2O             | CO2e    |
|--------------------------------------------|------------------------|-----------|--------|-----------------|---------|
| Land Use                                   | Mgal                   |           | MT     | /yr             |         |
| Automobile Care<br>Center                  | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| City Park                                  | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Convenience<br>Market (24 Hour)            | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Fast Food<br>Restaurant with<br>Drive Thru | 0 / 0                  | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Gasoline/Service<br>Station                | 1 005                  | 9.7891    | 0.1070 | 2.5300e-<br>003 | 13.2184 |
| Mobile Home<br>Park                        | 4.045                  | 9.7193    | 0.0357 | 8.4000e-<br>004 | 10.8624 |
| Other Asphalt<br>Surfaces                  | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Parking Lot                                | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Total                                      |                        | 19.5084   | 0.1427 | 3.3700e-<br>003 | 24.0807 |

Page 41 of 45

Love's Truck Stop Apple Valley - San Bernardino-Mojave Desert County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

#### 7.2 Water by Land Use

**Mitigated** 

|                                            | Indoor/Out<br>door Use | Total CO2 | CH4    | N2O             | CO2e    |
|--------------------------------------------|------------------------|-----------|--------|-----------------|---------|
| Land Use                                   | Mgal                   |           | МТ     | /yr             |         |
| Automobile Care<br>Center                  | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| City Park                                  | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Convenience<br>Market (24 Hour)            | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Fast Food<br>Restaurant with<br>Drive Thru | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Gasoline/Service<br>Station                | 3.285 /<br>1.095       | 9.7891    | 0.1070 | 2.5300e-<br>003 | 13.2184 |
| Mobile Home<br>Park                        | 4.045                  | 9.7193    | 0.0357 | 8.4000e-<br>004 | 10.8624 |
| Other Asphalt<br>Surfaces                  | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Parking Lot                                | 0/0                    | 0.0000    | 0.0000 | 0.0000          | 0.0000  |
| Total                                      |                        | 19.5084   | 0.1427 | 3.3700e-<br>003 | 24.0807 |

## 8.0 Waste Detail

## 8.1 Mitigation Measures Waste

Love's Truck Stop Apple Valley - San Bernardino-Mojave Desert County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

#### Category/Year

|            | Total CO2 | CH4    | N2O    | CO2e    |
|------------|-----------|--------|--------|---------|
|            |           | Π      | /yr    |         |
| iniigatea  | 36.8246   | 2.1763 | 0.0000 | 91.2314 |
| Ginnigatou | 36.8246   | 2.1763 | 0.0000 | 91.2314 |

Page 43 of 45

Love's Truck Stop Apple Valley - San Bernardino-Mojave Desert County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

### 8.2 Waste by Land Use

**Unmitigated** 

|                                            | Waste<br>Disposed | Total CO2 | CH4    | N2O    | CO2e    |
|--------------------------------------------|-------------------|-----------|--------|--------|---------|
| Land Use                                   | tons              |           | МТ     | /yr    |         |
| Automobile Care<br>Center                  | 52.68             | 10.6936   | 0.6320 | 0.0000 | 26.4929 |
| City Park                                  | 0.96              | 0.1949    | 0.0115 | 0.0000 | 0.4828  |
| Convenience<br>Market (24 Hour)            | 38.8              | 7.8761    | 0.4655 | 0.0000 | 19.5126 |
| Fast Food<br>Restaurant with<br>Drive Thru | 35.02             | 7.1087    | 0.4201 | 0.0000 | 17.6116 |
| Gasoline/Service<br>Station                | 13.47             | 2.7343    | 0.1616 | 0.0000 | 6.7741  |
| Mobile Home<br>Park                        | 40.48             | 8.2171    | 0.4856 | 0.0000 | 20.3575 |
| Other Asphalt<br>Surfaces                  | 0                 | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Parking Lot                                | 0                 | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Total                                      |                   | 36.8246   | 2.1763 | 0.0000 | 91.2314 |

Page 44 of 45

Love's Truck Stop Apple Valley - San Bernardino-Mojave Desert County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

#### 8.2 Waste by Land Use

**Mitigated** 

|                                            | Waste<br>Disposed | Total CO2 | CH4    | N2O    | CO2e    |
|--------------------------------------------|-------------------|-----------|--------|--------|---------|
| Land Use                                   | tons              |           | MT     | /yr    |         |
| Automobile Care<br>Center                  | 52.68             | 10.6936   | 0.6320 | 0.0000 | 26.4929 |
| City Park                                  | 0.96              | 0.1949    | 0.0115 | 0.0000 | 0.4828  |
| Convenience<br>Market (24 Hour)            | 38.8              | 7.8761    | 0.4655 | 0.0000 | 19.5126 |
| Fast Food<br>Restaurant with<br>Drive Thru | 35.02             | 7.1087    | 0.4201 | 0.0000 | 17.6116 |
| Gasoline/Service<br>Station                | 13.47             | 2.7343    | 0.1616 | 0.0000 | 6.7741  |
| Mobile Home<br>Park                        | 40.48             | 8.2171    | 0.4856 | 0.0000 | 20.3575 |
| Other Asphalt<br>Surfaces                  | 0                 | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Parking Lot                                | 0                 | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Total                                      |                   | 36.8246   | 2.1763 | 0.0000 | 91.2314 |

## 9.0 Operational Offroad

|  | Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type |
|--|----------------|--------|-----------|-----------|-------------|-------------|-----------|
|--|----------------|--------|-----------|-----------|-------------|-------------|-----------|

## **10.0 Stationary Equipment**

Fire Pumps and Emergency Generators

Love's Truck Stop Apple Valley - San Bernardino-Mojave Desert County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

| Equipment Type         | Number | Hours/Day      | Hours/Year      | Horse Power   | Load Factor | Fuel Type |
|------------------------|--------|----------------|-----------------|---------------|-------------|-----------|
| <u>Boilers</u>         |        |                |                 |               |             |           |
| Equipment Type         | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type   |           |
| User Defined Equipment |        |                |                 |               |             |           |
| Equipment Type         | Number |                |                 |               |             |           |
| 11.0 Vegetation        |        |                |                 |               |             |           |

#### **Mobile Source Emissions Summary**

|         | TOG                                                       | ROG                                                                                                                                                                                                                                                                                                           | Nox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO2e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LBS/DAY | 22.4                                                      | 21.6                                                                                                                                                                                                                                                                                                          | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10528.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ТРҮ     | 4.1                                                       | 3.9                                                                                                                                                                                                                                                                                                           | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MT/YR   | 0.0                                                       | 0.0                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1743.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1791.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                                                           |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | TOG                                                       | ROG                                                                                                                                                                                                                                                                                                           | Nox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO2e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LBS/DAY | 16.4                                                      | 15.8                                                                                                                                                                                                                                                                                                          | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9329.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ТРҮ     | 3.0                                                       | 2.9                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MT/YR   | 0.0                                                       | 0.0                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1544.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1583.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -       |                                                           |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | TOG                                                       | ROG                                                                                                                                                                                                                                                                                                           | Nox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PM2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO2e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LBS/DAY | 10.2                                                      | 9.9                                                                                                                                                                                                                                                                                                           | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8254.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ТРҮ     | 1.9                                                       | 1.8                                                                                                                                                                                                                                                                                                           | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MT/YR   | 0.0                                                       | 0.0                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1366.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1399.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | TPY<br>MT/YR<br>LBS/DAY<br>TPY<br>MT/YR<br>LBS/DAY<br>TPY | LBS/DAY         22.4           TPY         4.1           MT/YR         0.0           IBS/DAY         16.4           TPY         3.0           MT/YR         0.0           IBS/DAY         16.4           TPY         3.0           MT/YR         0.0           IDS/DAY         10.2           TPY         1.9 | LBS/DAY         22.4         21.6           TPY         4.1         3.9           MT/YR         0.0         0.0           TOG         ROG           LBS/DAY         16.4         15.8           TPY         3.0         2.9           MT/YR         0.0         0.0           TOG           ROG           LBS/DAY         16.4         15.8           TPY         3.0         2.9           MT/YR         0.0         0.0           TOG           ROG         LBS/DAY         10.2         9.9           TPY         1.9         1.8         1.8 | LBS/DAY         22.4         21.6         10.6           TPY         4.1         3.9         1.9           MT/YR         0.0         0.0         0.0           TOG         ROG         Nox           LBS/DAY         16.4         15.8         8.0           TPY         3.0         2.9         1.5           MT/YR         0.0         0.0         0.0           LBS/DAY         16.2         9.9         6.7           TPY         1.9         1.8         1.2 | LBS/DAY         22.4         21.6         10.6         0.0           TPY         4.1         3.9         1.9         0.0           MT/YR         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0           LBS/DAY         16.4         15.8         8.0         0.0           TPY         3.0         2.9         1.5         0.0           MT/YR         0.0         0.0         0.0         0.0           TPY         3.0         2.9         1.5         0.0           MT/YR         0.0         0.0         0.0         0.0           TOG         ROG         Nox         CO           LBS/DAY         10.2         9.9         6.7         0.0           TPY         1.9         1.8         1.2         0.0 | LBS/DAY         22.4         21.6         10.6         0.0         0.1           TPY         4.1         3.9         1.9         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0           MT/YR         16.4         15.8         8.0         0.0         0.1           TPY         3.0         2.9         1.5         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0           MT/YR         10.2         9.9         6.7         0.0         0 | LBS/DAY         22.4         21.6         10.6         0.0         0.1         0.2           TPY         4.1         3.9         1.9         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0           LBS/DAY         16.4         15.8         8.0         0.0         0.1         0.2           TPY         3.0         2.9         1.5         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.1 | LBS/DAY         22.4         21.6         10.6         0.0         0.1         0.2         0.6           TPY         4.1         3.9         1.9         0.0         0.0         0.0         0.1           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0           LBS/DAY         16.4         15.8         8.0         0.0         0.1         0.2         0.6           TPY         3.0         2.9         1.5         0.0         0.1         0.2         0.6           MT/YR         0.0         0.0         0.0         0.1         0.2         0.6           TPY         3.0         2.9         1.5         0.0         0.0         0.0         0.1           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0. | LBS/DAY         22.4         21.6         10.6         0.0         0.1         0.2         0.6         10528.4           TPY         4.1         3.9         1.9         0.0         0.0         0.0         0.1         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         1743.1           Constraint         CO         SOx         PM2.5         PM10         CO2           LBS/DAY         16.4         15.8         8.0         0.0         0.1         0.2         0.6         9329.4           TPY         3.0         2.9         1.5         0.0         0.0         0.0         0.1         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.1         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         1544.6           MT/YR         0.0         0.0         0.0         0.0         0.1         0.2         0.5         8254.8           TPY         1.9         1.8         1.2         0.0         0.0         0.0         0.1         0.0 | LBS/DAY         22.4         21.6         10.6         0.0         0.1         0.2         0.6         10528.4         1.2           TPY         4.1         3.9         1.9         0.0         0.0         0.0         0.1         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         1743.1         0.2           TOG         ROG         Nox         CO         SOx         PM2.5         PM10         CO2         CH4           LBS/DAY         16.4         15.8         8.0         0.0         0.1         0.2         0.6         9329.4         0.9           TPY         3.0         2.9         1.5         0.0         0.0         0.1         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR | LBS/DAY         22.4         21.6         10.6         0.0         0.1         0.2         0.6         10528.4         1.2         0.9           TPY         4.1         3.9         1.9         0.0         0.0         0.0         0.1         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         1743.1         0.2         0.1           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.1         0.2         0.6         9329.4         0.9         0.7           TPY         3.0         2.9         1.5         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0           MT/YR         0.0         0.0         0.0 | LBS/DAY         22.4         21.6         10.6         0.0         0.1         0.2         0.6         10528.4         1.2         0.9         0.0           TPY         4.1         3.9         1.9         0.0         0.0         0.1         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <t< td=""></t<> |

| 2024 Mobile Emis                                                           | isions.                                                                                |                                                                                                                      |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                               |                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                        |                                                             |                                                             |                                                                                                         |                                                                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                                                                                                                    |                                                                                                                          |                                                             |                                                                    |                                                                    |                                                                                                   |                                                                    |                                                                                                            |                                                             |                                                                                                               |                                                                                                     |                                                                    |                                                                          |                                                       |                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metrics                                                                    |                                                                                        | ADT                                                                                                                  | Annual VMT                                                                                                                                                         | Daily VM1 fleet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conv                                                                                                                                                                                                                                                                     | ersions                                                                       |                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                        |                                                             |                                                             |                                                                                                         |                                                                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                                                                                                                    |                                                                                                                          |                                                             |                                                                    |                                                                    |                                                                                                   |                                                                    |                                                                                                            |                                                             |                                                                                                               |                                                                                                     |                                                                    |                                                                          |                                                       |                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                            | Truck Stop<br>RV park                                                                  | 5,326<br>238<br>5,564                                                                                                | 3,528,368<br>678,819<br>4,207,187                                                                                                                                  | 9,667 fleet average<br>1,860 fleet average<br>11,527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lb to<br>lb to                                                                                                                                                                                                                                                           | s <b>/yr</b> 365<br>t 0.0005i<br>mt 0.0004<br>b 0.002                         | i i                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                        |                                                             |                                                             |                                                                                                         |                                                                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                                                                                                                    |                                                                                                                          |                                                             |                                                                    |                                                                    |                                                                                                   |                                                                    |                                                                                                            |                                                             |                                                                                                               |                                                                                                     |                                                                    |                                                                          |                                                       |                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| EFs and Fleet Mix<br>From Caleemod<br>2022                                 | Operati<br>onal<br>Year<br>2024<br>2024<br>2024<br>2024<br>2024<br>2024<br>2024<br>202 | Vehicl<br>e Type<br>HHDT<br>LDA<br>LDT2<br>LDT2<br>LDT2<br>LDT2<br>LDT2<br>MCY<br>MH<br>MHDT<br>OBUS<br>SBUS<br>UBUS | Fleet %<br>1.9054%<br>48.6643%<br>4.5873%<br>2.6490%<br>3.5385%<br>0.4909%<br>3.5385%<br>0.5395%<br>0.5317%<br>0.0505%<br>0.0505%<br>0.0505%<br>0.0237%<br>0.0237% | G G G G G G G G G G G G G G G G G G G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G<br>ST<br>RE                                                                                                                                                                                                                                                            | G G G<br>DI H(UR TS<br>VN O/<br>C C C C C C C C C C C C C C C C C C C         | G<br>RU<br>NL                                        | R0<br>G<br>NE<br>X<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br># | ID<br>LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G G G<br>SST DI<br>SST DI<br>X N<br>X N<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |                                                             | RU NOS<br>####################################              | ₩0<br>X<br>NE<br>X<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷ | x<br>ID<br>LE<br>X<br>**<br>0<br>0<br>0<br>**<br>*<br>0<br>0<br>0<br>0<br>0<br>*<br>*<br>*<br>*<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>*<br>*<br>*<br>* | x<br>ST<br>RE<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | CO         CO           RU         IE           NE         LIIX           X         X           G         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         - |                                                             | X RUE<br>RUE<br>X J<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | х<br>ID<br>LE<br>X<br>, "<br>"<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 50<br>x<br>RE<br>X                                          | r M2<br>.5<br>RU<br>NE<br>**<br>**<br>**<br>**<br>**               | r<br>M2<br>.5<br>ID<br>LE<br>                                      | r M2<br>.5<br>ST<br>RE<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | - M2<br>.5 P M                                                     | M2<br>.5<br>P<br>M<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷                                       |                                                             | r r r<br>M1 Mi<br>0 0<br>ID ST<br>LE RE<br>7 0 7<br>0 7<br>0 7<br>0 7<br>0 7<br>0 7<br>0 7<br>0 7<br>0 7<br>0 | - M1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | г M1<br>ОРМ<br>Сван аналасананананананананананананананананан       | 20 ~ 20 NE X                                                             | 2<br>ID<br>LE<br>X<br>2<br>                           | 2<br>ST RE<br>X                                         | ARU<br>NE<br>X<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷<br>÷                       | 4<br>ID<br>LE<br>X<br>*<br>*<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                   | 4 0     4 0     5     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7     7 | E LE<br>X X<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | N₂         III           0         C           ST         RU           X         X           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -           0         -      0         - |
| DAILY<br>EF (in g/ADT or<br>g/VMT) *                                       |                                                                                        | ADT 106.0<br>2707.5                                                                                                  | Daily VMT<br>219.6<br>5609.3                                                                                                                                       | TOG TOG T<br>RUNEX IDLEX ST<br>(Ib/d) (Ib/d) (Ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OG TO                                                                                                                                                                                                                                                                    | 0G TOG<br>RN HOTSC<br>(d) (lb/d)<br>0 0.0                                     | TOG                                                  | ROG<br>RUNEX                                                                                                 | ROG RO<br>IDLEX STR<br>(lb/d) (lb/<br>0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G ROG<br>EX DIURI<br>d) (lb/d)                                                                                                         |                                                             | ROG<br>RUNLO<br>SS<br>(lb/d)<br>0.0<br>1.0                  | NOx<br>RUNEX I                                                                                          | NOx N<br>DLEX ST<br>(Ib/d) (II<br>1.3                                                                                                                  | IOx C<br>TREX RU<br>b/d) (Ib                                                                                              | о со                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO<br>STREX                                                 | SOx<br>RUNEX                                                                                                       | SOx<br>IDLEX                                                                                                             | SOx<br>STREX                                                | PM2.5<br>RUNEX                                                     | PM2.5                                                              | PM2.5 P<br>STREX P<br>(lb/d) (1                                                                   | M2.5 PI<br>MTW PI<br>Ib/d) (I                                      | are g/mile, n                                                                                              | otg/trip<br>IO PM:<br>EX IDLE<br>d) (Ib/                    | 10 PM10<br>EX STREX<br>d) (lb/d)<br>0 0.0                                                                     | PM10                                                                                                | PM10                                                               | CO2<br>RUNEX                                                             | CO2<br>IDLEX                                          | STREX RU<br>(lb/d) (l                                   | CH <sub>4</sub> C<br>JNEX ID<br>Ib/d) (II<br>0.0 (                                     | H <sub>4</sub> CH<br>LEX STR<br>5/d) (Ib/<br>0.0 0.                                                                                                                                                                                                                                                                                                 | H <sub>4</sub> N <sub>2</sub> O<br>REX RUNE2<br>(d) (lb/d)<br>0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N <sub>2</sub> O<br>C IDLEX                                                                           | N <sub>2</sub> O HFC<br>STREX RUNEX<br>(lb/d)<br>0.0 0.0<br>0.2 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ADT/VMT * g/lb<br>conv                                                     | LDT1<br>LDT2<br>LHDT1<br>LHDT2<br>MCY<br>MDV<br>MH<br>MHDT                             | 255.2<br>1140.4<br>196.9<br>52.7<br>147.9<br>881.8<br>35.6<br>29.6                                                   | 528.8<br>2362.6<br>407.9<br>109.2<br>306.5<br>1827.0<br>73.7<br>61.3                                                                                               | 0.1 0.0 0<br>0.1 0.0 0<br>0.0 0.0 0<br>1.0 0.0 0<br>0.1 0.0 0<br>0.0 0<br>0  | 1.1         0.           1.1         0.           0.1         0.           0.1         0.           0.0         0.           1.1         0.           0.0         0.           0.0         0.           0.0         0.           0.0         3.           0.0         0. | 6 0.1<br>9 0.2<br>1 0.0<br>0 0.0<br>9 1.2<br>0 0.2<br>1 0.7                   | 0.3<br>0.5<br>0.1<br>0.0<br>1.2<br>0.6<br>0.0<br>0.0 | 0.0<br>0.1<br>0.1<br>0.0<br>0.8<br>0.1<br>0.0<br>0.0                                                         | 0.0 0.<br>0.0 1.<br>0.0 0.<br>0.0 0.<br>0.0 0.<br>0.0 0.<br>0.0 1.<br>0.0 1.<br>0.0 0.<br>0.0 0.0 0.0 0.<br>0.0 0.0 0.0 0.<br>0.0 0.0 0.0 0.<br>0.0 0.0 0.0 0.0 0.<br>0.0 0.0 0.0 0.0 0.0 0.<br>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 4 0.6<br>0 0.9<br>0 0.1<br>0 0.0<br>5 0.9<br>L 1.0<br>0 3.1                                                                            | 0.1<br>0.2<br>0.0<br>0.0<br>1.2<br>0.2<br>0.7<br>0.0        | 0.3<br>0.5<br>0.1<br>0.0<br>1.2<br>0.6<br>0.0<br>0.0        | 0.2<br>0.4<br>1.1<br>0.3<br>0.4<br>0.6<br>0.3                                                           | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                   | 0.3 2<br>0.9 4<br>0.2 0<br>0.0 0<br>0.1 1<br>0.9 4<br>0.0 0                                                               | .3 0.0<br>.5 0.0<br>.9 0.1<br>.1 0.0<br>.7 0.0<br>.2 0.0<br>.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.1<br>9.6<br>0.8<br>0.1<br>2.7<br>8.4<br>0.2<br>0.1        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1 | 0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0                   | D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                  | 0.0<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 402.7<br>1833.1<br>516.2<br>150.2<br>130.0<br>1755.0<br>253.6<br>167.7   | 0.0                                                   | 51.9<br>221.6<br>6.5<br>0.9<br>17.1<br>209.8<br>1.8     | 0.0 0<br>0.0 0<br>0.0 0<br>0.0 0<br>0.1 0<br>0.0 0<br>0.0 0                            | 0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0. | 1 0.0<br>2 0.0<br>0 0.0<br>0 0.0<br>1 0.0<br>2 0.0<br>0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                               | 0.0         0.0           0.1         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                            | OBUS<br>SBUS<br>UBUS<br>SUM                                                            | 2.8<br>5.9<br>1.3<br>5564                                                                                            | 5.8<br>12.2<br>2.7<br>11527                                                                                                                                        | 0.0 0.0 0<br>0.0 0.0 0<br>0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 0.<br>0.0 0.<br>0.0 0.                                                                                                                                                                                                                                               | 0 0.0<br>0 0.0<br>0 0.0<br>8.5 3.:                                            | 0.0<br>0.0<br>0.0<br>1 3.7                           | 0.0<br>0.0<br>0.0<br>1.2                                                                                     | 0.0 0.0<br>0.0 0.0<br>0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0 0.0 0.0                                                                                                                            |                                                             | 0.0<br>0.0<br>0.0                                           | 0.0<br>0.1<br>0.0                                                                                       | 0.0<br>0.0                                                                                                                                             | 0.0 0<br>0.0 0<br>0.0 0                                                                                                   | .0 0.0<br>.0 0.0<br>.1 0.0<br>31.8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0<br>0.0<br>0.0                                           | 0.0<br>0.0<br>0.0                                                                                                  | 0.0<br>0.0<br>0.0<br>0.0                                                                                                 | 0.0<br>0.0<br>0.0                                           | 0.0<br>0.0<br>0.0                                                  | 0.0<br>0.0<br>0.0<br>0.0                                           | 0.0<br>0.0                                                                                        | 0.0<br>0.0                                                         | 0.0 0.0                                                                                                    | ) 0.0<br>) 0.0<br>) 0.0                                     | D 0.0<br>D 0.0                                                                                                | 0.0<br>0.0<br>0.0                                                                                   | 0.0<br>0.0<br>0.0                                                  | 20.6<br>30.6<br>11.9<br>9352.0                                           | 0.3<br>2.8<br>0.0                                     | 0.2<br>0.0                                              | 0.0 0.0                                                                                | 0.0 0.<br>0.0 0.<br>0.0 0.                                                                                                                                                                                                                                                                                                                          | 0.0 0.0<br>0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0<br>0.0<br>0.0                                                                                     | 0.0 0.0<br>0.0 0.0<br>0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ANNUAL                                                                     | -                                                                                      |                                                                                                                      | Annual VMT                                                                                                                                                         | RUNEX IDLEX ST<br>(tpy) (tpy) (t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | py) (tp                                                                                                                                                                                                                                                                  | RN AK<br>y) (tpy)                                                             | SS (tpy)                                             | RUNEX<br>(tpy)                                                                                               | ROG RO<br>IDLEX STR<br>(tpy) (tp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EX DIURN<br>(tpy)                                                                                                                      | AK<br>(tpy)                                                 | SS (tpy)                                                    | RUNEX I<br>(tpy)                                                                                        | DLEX ST<br>(tpy) (t                                                                                                                                    | iOx C<br>REX RU<br>tpy) (t                                                                                                | NEX IDLEX<br>by) (tpy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (tpy)                                                       | (tpy)                                                                                                              | IDLEX<br>(tpy)                                                                                                           | STREX<br>(tpy)                                              | RUNEX<br>(tpy)                                                     | IDLEX (tpy)                                                        | STREX P<br>(tpy) (                                                                                | MTW PI<br>(tpy) (                                                  | MBW RUN<br>tpy) (tp;                                                                                       | EX IDLE<br>/) (tpy                                          |                                                                                                               | PMTW<br>(tpy)                                                                                       | PMBW<br>(tpy)                                                      | RUNEX<br>(mt/yr)                                                         | IDLEX<br>(mt/yr)                                      | STREX RU<br>(mt/yr) (m                                  | JNEX ID<br>nt/yr) (m                                                                   | t/yr) (mt/                                                                                                                                                                                                                                                                                                                                          | EX RUNE<br>/yr) (mt/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) (mt/yr)                                                                                             | N <sub>2</sub> O HFC<br>STREX RUNEX<br>(mt/yr) (mt/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| tpy for CPs<br>mt/yr for GHG<br>Lbs/day x 365 x<br>Ib/ton or Ib/MT<br>conv | HHDT<br>LDA<br>LDT1<br>LDT2<br>LHDT1<br>LHDT2<br>MCY<br>MDV<br>MH                      | 38692.7<br>988233.3<br>93155.8<br>416233.2<br>71855.8<br>19230.4<br>53997.2<br>321874.7<br>12987.3                   | 80162.6<br>2047399.3<br>192998.1<br>862342.5<br>148869.3<br>39841.2<br>111870.2<br>666852.6<br>26906.9                                                             | 0.0 0.0 0<br>0.0 0.0 0<br>0.0 0.0 0<br>0.0 0.0 0<br>0.0 0.0 0<br>0.2 0.0 0<br>0.0 0 | 0.2 0.<br>0.0 0.                                                                                                                                                                                                                                                         | 4 0.1<br>1 0.0<br>2 0.0<br>0 0.0<br>0 0.0<br>2 0.2<br>2 0.2<br>2 0.0<br>6 0.1 | 0.0<br>0.2<br>0.1<br>0.0<br>0.0<br>0.2<br>0.1<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.2<br>0.0<br>0.0                                                  | 0.0         0.1           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2           0.0         0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 0.4<br>1 0.1<br>2 0.2<br>0 0.0<br>0 0.0<br>1 0.2<br>2 0.2<br>0 0.6                                                                   | 0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.2<br>0.0<br>0.1 | 0.0<br>0.2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.2<br>0.1<br>0.0 | 0.1<br>0.1<br>0.0<br>0.1<br>0.2<br>0.1<br>0.1<br>0.1<br>0.1                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                     | 0.3 1<br>0.1 0<br>0.2 0<br>0.0 0<br>0.0 0<br>0.0 1<br>0.2 0<br>0.0 1<br>0.2 0                                             | .0         0.3           .6         0.0           .4         0.0           .8         0.0           .2         0.0           .0         0.0           .8         0.0           .9         0.0           .0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>3.3<br>0.7<br>1.7<br>0.1<br>0.0<br>0.5<br>1.5<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1 | 0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0 | D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0<br>D 0.0                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 122.5<br>553.1<br>66.7<br>303.5<br>85.5<br>24.9<br>21.5<br>290.6<br>42.0 | 40.6<br>0.0<br>0.0<br>0.7<br>0.3<br>0.0<br>0.0<br>0.0 | 66.5<br>8.6<br>36.7<br>1.1<br>0.1<br>2.8<br>34.7<br>0.3 | 0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 ( | 0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.           0.0         0.                          | 1 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0<br>0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                           | 0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                            | MHDT<br>OBUS<br>SBUS<br>UBUS<br>SUM                                                    | 10797.2<br>1024.9<br>2150.4<br>481.1                                                                                 | 22369.4<br>2123.4<br>4455.1<br>996.6                                                                                                                               | 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0 0.<br>0.0 0.<br>0.0 0.<br>0.0 0.<br>1.0 1.                                                                                                                                                                                                                           | 0 0.0<br>0 0.0<br>0 0.0                                                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.7                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.2                                                                              | 0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.7                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.9                                                                         | 0.0<br>0.0<br>0.0                                                                                                                                      | 0.0 0<br>0.0 0<br>0.0 0                                                                                                   | .0 0.0<br>.0 0.0<br>.0 0.0<br>.0 0.0<br>.0 0.0<br>.8 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>0.0<br>0.0<br>0.0<br>8.0                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                          | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                    | 0.0<br>0.0<br>0.0                                                                                 | 0.0<br>0.0<br>0.0                                                  | 0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1<br>0.0 0.1                                                        | ) 0.0<br>) 0.0                                              | D 0.0<br>D 0.0<br>D 0.0                                                                                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.1                                    | 27.8<br>3.4<br>5.1<br>2.0<br>1548.3                                      | 1.7<br>0.0<br>0.5<br>0.0<br>43.7                      | 0.0                                                     | 0.0 0                                                                                  | 0.0 0.<br>0.0 0.<br>0.0 0.<br>0.0 0.<br>0.0 0.                                                                                                                                                                                                                                                                                                      | 0 0.0<br>0 0.0<br>0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                       | 0.0 0.0<br>0.0 0.0<br>0.0 0.0<br>0.0 0.0<br>0.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Metrics                             |                  | ADT                 | Annual VMT           | Daily M. 77        | floot           |         |                     |              |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |
|-------------------------------------|------------------|---------------------|----------------------|--------------------|-----------------|---------|---------------------|--------------|----------------------|-------|-------|---------------------|------------|-------------|-----------------------|-----------------|-----------------|-----------------|-----------------|-------------|--------------|--------------|----------|-----------|------------|-----------|--------------------|-------------------------|---------------|-------------|--------|----------------|--------------------------|-----------------|--------------------------|--------------------------|--------------|--------------------------|----------------|------------------|-------------------|----------|
| Metrics                             | Truck Stop       | 5,326               | 3,528,368            | Daily VMT<br>9,667 | fleet average   |         | days/yr             | 365          |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |
|                                     | RV park<br>total | 238<br>5,564        | 678,819<br>4,207,187 | 1,860              | fleet average   | ze i    | lb to t<br>lb to mt | 0.00050      |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |
|                                     | totai            | 3,304               | 4,207,187            | 11,527             |                 |         |                     | 0.00043      |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |
|                                     |                  |                     |                      |                    |                 |         |                     |              |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |
| EFs and Fleet Mix                   |                  |                     |                      | то                 | то              | то      | то                  | то           | то                   | RO    | RO    | RO                  | RO         | RO F        | O NO                  | NO              | NO              | CO              | со              | CO          | so           | so           | so       | РМ        | РМ         | РМ        | РМ                 | РМ                      | РМ Р          | м ри        | 1 РМ   | РМ             | CO                       | co              | со                       | СН                       | СН           | СН                       | N <sub>2</sub> | N <sub>2</sub>   | N <sub>2</sub>    | HF       |
| From Caleemod                       | Operatio         | Vehicle             |                      | G                  | G               | G<br>ST | G<br>DIU            | G<br>HO      | G                    | G     | G     | G<br>ST             | G DIU      | G G<br>HO R | i x<br>U RU           | X<br>IDI        | x               | RU              | IDL             | ST          | x<br>RU      | x            | x<br>ST  | 2.5<br>RU | 2.5        | 2.5<br>ST | 2.5<br>PM          |                         | 10 1<br>RU II |             |        | 10<br>PM       | 2<br>RU                  | ÎDI.            | ŝT                       | RU                       | 1<br>IDI     | ŝT                       | 0<br>RU        | 0<br>IDL         | 0<br>ST           | C<br>RU  |
| 2022                                | nal Year         | Туре                | Fleet %              | NE                 | EX              | RE      | RN                  | TS           | NL                   | NE    | EX    | RE                  |            |             | L NE                  | EX              | ST              | X               | EX              | RE          | NE           | IDL<br>EX    | RE       | NE        | IDL<br>EX  | RE        | TW                 |                         | RU II<br>NE E |             |        |                | NE                       | EX              | RE                       | NE                       | EX           | RE                       | NE             | EX               | RE                | NE       |
|                                     |                  |                     |                      | x                  | (g/t            | x       | (g/t                | OA           | OS                   | x     | (g/t  | x                   | (g/t       | DA C        | s x                   | (g/1            | x               | (g/             | (g/t<br>rip)    | (g/t        | x            | (g/t         | x        | x         | (g/t       | x         | (g/t               | (g/t                    | X ((          | g/t X       | (g/t   | (g/t           | x                        | (g/t            | x                        | x                        | (g/t         | x                        | x              | (g/t             | x                 | x        |
|                                     | 2030             | HHDT                | 2.1655%              |                    | Tin )           | 0       | rin)                | ĸ            | ¢                    | (0)   | Tin)  | 0                   | rin)       | 2 9         | (n/                   | rin)            | (a/t            | i)              |                 | 0           | 101          | (in)         | 0        | (a/       | (in)       | 0         | Tin)               | rin)<br>#               | (n/ r)        | n) (a)<br>0 | t rin) | Tin)           | (0/                      | rin)            | (a/t                     | (0/                      | rin)         | 0                        |                | rin)             | 0                 | (n/      |
|                                     | 2030             | LDA                 | 48.2973%             |                    | 0               |         |                     |              |                      |       | 0     |                     |            |             |                       | 0               |                 |                 | 0               |             |              | 0            |          |           | 0          |           | -                  | ÷                       | . 0           |             |        |                |                          | 0               |                          |                          | 0            |                          |                | 0                |                   | 0        |
|                                     | 2030             | LDT1                | 3.8456%              |                    | 0               |         |                     |              |                      |       | 0     | -                   |            |             |                       | 0               |                 |                 | 0               |             |              | 0            |          |           | 0          |           |                    | 1                       | 0             |             |        |                |                          | 0               |                          |                          | 0            |                          | _ <u></u>      | 0                |                   | 0        |
|                                     | 2030<br>2030     | LDT2<br>LHDT1       | 22.5601%<br>3.1616%  |                    |                 |         | •                   |              | *                    |       |       | \$                  | e - e      | -           | •                     |                 | -               | -               |                 | •           | \$           | 0            |          | *         |            |           | *                  | *                       | ÷             |             | \$     | *              | -                        |                 | *                        | -                        |              |                          |                |                  | •                 |          |
|                                     | 2030             | LHDT2               | 0.8850%              | - :                | - :             | - 2     | - :                 | 1            | - 1                  | 1     | 1     | 2                   |            | 1           | - :                   | - :             | - :             | 1               | - 1             | 1           | 1            | 0            | 0        | 1         | - 1        | 0         | 1                  | 1                       | : :           | 0           | 1      | - : -          | - : -                    | 1               | - 2                      | -:                       | - :          | - 1                      |                | 1                | 1                 | :        |
|                                     | 2030             | MCY                 | 2.4881%              |                    | 0               | ÷       | -                   | -            | -                    | -     | 0     | ÷.                  |            |             |                       | 0               | -               | -               | 0               | -           | -            | 0            | 0        | -         | 0          |           | -                  | ÷.                      | 0             |             | -      | -              |                          | 0               | -                        |                          | 0            | -                        |                | 0                | -                 | 0        |
|                                     | 2030             | MDV<br>MH           | 15.3780%<br>0.4594%  |                    | 0               |         |                     |              |                      |       | 0     | -                   |            |             |                       | 0               |                 |                 | 0               |             |              | 0            |          |           | 0          |           |                    | -                       | 0             |             |        | -              |                          | 0               |                          |                          | 0            |                          | <u> </u>       | 0                |                   | 0        |
|                                     | 2030<br>2030     | MHDT                | 0.5811%              |                    | *               | ÷       |                     | ÷.           | ÷                    |       | *     | ÷                   | <i>i</i> i |             |                       |                 |                 | ÷               | *               |             | ÷            | *            | 0        | ÷         | *          | 0         | ÷.                 | ÷                       | ÷ *           | 0           | ÷      | ÷              |                          |                 | ÷                        |                          |              | ÷                        |                |                  |                   | *        |
|                                     | 2030             | OBUS                | 0.0451%              |                    | 1               | ÷       | -                   | 1            | 1                    | -     | 1     | ÷                   |            | 1           |                       | 1               | -               | 1               | ÷               | -           | 1            | -            | 0        | 1         | ÷          | 0         | 1                  | 1                       |               | 0           | 1      | 1              | -                        | ÷               | -                        | 1                        | -            | 1                        |                | -                | -                 | 0        |
|                                     | 2030             | SBUS                | 0.1099%              |                    | 1               | - 1     | - 1                 |              | - 1                  |       | 1     | 1                   |            |             |                       | - 1             | - 1             |                 | 3.3             |             |              | 1            | 0        |           | 1          | 0         |                    | 1                       |               | 0           |        | - 1            | - 1                      | 1               | - 1                      | - 1                      | 1            | - 1                      |                | 1                |                   | 0        |
|                                     | 2030             | UBUS                | 0.0234%              | VMT                | 0               |         | 1                   | 1            |                      | VMT   | ADT A | DT A                | DT AD      | T ADI       | VMT                   | 0<br>ADT        | ADT             | VMT             | 0<br>ADT        | 1           | VMT          | 0<br>ADT     | 0<br>ADT | VMT       | 0<br>ADT   | 0<br>ADT  | VMT                | -                       | 0<br>//T ADT  | 0<br>ADT    | -      | -              | VMT                      | 0<br>ADT        | ADT                      | VMT                      | 0<br>ADT     | 1                        | VMT            | 0<br>ADT         | ADT               | 0<br>VMT |
|                                     |                  |                     | metric               | VIVII              | ADT             | ADT     | ADT                 | ADT          | ADT                  | VIVII | ADI A | UI A                | DI AD      | I ADI       | VMI                   | ADI             | AUT             | VMT             | ADT             | ADT         | VMT          | ADT          | ADT      | VMT       | ADT        |           |                    | VMT VM<br>reg/mile, not |               | ADI         | VMT    | VMT            | VIVII                    | ADT             | ADT                      | VIVII                    | ADT          | ADT                      | VMI            | ADI              | ADI               | VMI      |
|                                     |                  |                     |                      |                    |                 |         |                     |              |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |
|                                     |                  |                     |                      | TOG                |                 |         | TOG                 | TOG<br>HOTSO |                      |       |       | OG R                | DG HOT     | - KUU       | NOx                   | NOx             | NOx             | CO              | co              | co          |              | SOx          |          |           |            | PM2.5 P   |                    |                         |               |             | PM10   | PM10           | CO <sub>2</sub>          |                 | CO <sub>2</sub>          | CH₄                      | СН₄          | CH₄                      |                | N <sub>2</sub> O |                   | HFC      |
|                                     |                  |                     |                      | RUNEX<br>(lb/d)    | IDLEX<br>(lb/d) |         | DIURN<br>(lb/d)     | AK           | RUNLOS I<br>S (lb/d) |       |       | REX DIL<br>o/d) (Ib | KN AK      | RUNL        | DS RUNEX<br>d) (lb/d) | IDLEX<br>(lb/d) | STREX<br>(lb/d) | RUNEX<br>(lb/d) | IDLEX<br>(Ib/d) |             |              |              |          |           |            |           | MTW Pi<br>(lb/d) ( | MBW RUN<br>lb/d) (lb    |               |             |        | PMBW<br>(lb/d) | RUNEX<br>(lb/d)          |                 | STREX<br>(lb/d)          |                          |              | STREX<br>(lb/d)          |                |                  | STREX F<br>(lb/d) | (lb/d)   |
| DAILY                               |                  |                     | Daily VMT            |                    |                 |         |                     | (10/0)       |                      |       |       |                     | · (ID/     | a) ·        |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                | (,                       | (,              | 1.1.7                    | (                        |              | (,                       | (              | (                | ()                | <u> </u> |
| EF (in g/ADT or<br>g/VMT) * ADT/VMT | HHDT<br>LDA      | 120.5<br>2687.1     | 249.6<br>5567.0      | 0.0                | 0.1             | 0.0     | 0.0<br>1.7          | 0.0          | 0.0                  | 0.0   |       |                     | .0 0.0     |             |                       | 1.4<br>0.0      | 0.6             | 0.0<br>6.2      | 1.8             | 0.0<br>12.8 | 0.0          | 0.0          | 0.0      | 0.0       | 0.0<br>0.0 | 0.0       |                    | 0.0 0                   |               |             | 0.0    | 0.0            | 727.2<br>2896.1          | 247.8<br>0.0    | 0.0<br>345.0             | 0.0                      | 0.0          | 0.0                      | 0.1            | 0.0              |                   | 0.0      |
| * g/lb conv                         | LDT1             | 214.0               | 443.3                | 0.0                | 0.0             | 0.2     | 0.4                 | 0.1          | 0.2                  | 0.0   | 0.0   | 0.2 0               | .4 0.1     | L 0.2       | 0.1                   | 0.0             | 0.2             | 1.1             | 0.0             | 2.2         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       | 0.0                | 0.0 0                   | .0 0.0        | 0.0         | 0.0    | 0.0            | 304.7                    | 0.0             | 37.9                     | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              | 0.0               | 0.0      |
|                                     | LDT2             | 1255.2              | 2600.4               | 0.1                | 0.0             | 0.8     | 0.8                 | 0.2          | 0.4                  | 0.0   |       |                     | .8 0.2     |             |                       | 0.0             | 0.7             | 3.7             | 0.0             | 7.7         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 1801.6                   | 0.0             | 213.9<br>5.5             | 0.0                      | 0.0          | 0.2                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | LHDT1<br>LHDT2   | 175.9<br>49.2       | 364.4<br>102.0       | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   |       |                     | .0 0.0     |             | 0.5                   | 0.0             | 0.1             | 0.5             | 0.1             | 0.7         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 392.4<br>124.1           | 3.4             | 0.7                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | MCY              | 138.4               | 286.8                | 0.8                | 0.0             | 0.4     | 0.8                 | 1.1          | 1.1                  | 0.6   |       |                     | .8 1.1     |             |                       | 0.0             | 0.0             | 7.7             | 0.0             | 2.5         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 119.5                    | 0.0             | 14.3                     | 0.1                      | 0.0          | 0.1                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | MDV<br>MH        | 855.6<br>25.6       | 1772.6<br>53.0       | 0.1                | 0.0             | 0.7     | 0.8<br>1.7          | 0.2          | 0.4                  | 0.0   |       |                     | .8 0.2     |             |                       | 0.0             | 0.6             | 3.0<br>0.0      | 0.0             | 5.8<br>0.1  | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0<br>0.0  | 0.0    | 0.0            | 1510.0<br>177.7          | 0.0             | 178.1<br>1.1             | 0.0                      | 0.0          | 0.1                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | MHDT             | 32.3                | 67.0                 | 0.0                | 0.0             | 0.0     | 0.0                 | 0.4          | 0.0                  | 0.0   |       |                     | ./ 0.4     |             |                       | 0.0             | 0.0             | 0.0             | 0.0             | 0.1         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        |           |                    | 0.0 0                   |               |             | 0.0    | 0.0            | 157.8                    | 10.7            | 0.8                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | OBUS             | 2.5                 | 5.2                  | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   |       |                     | .0 0.0     |             |                       | 0.0             | 0.0             | 0.0             | 0.0             | 0.0         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        |           |                    | 0.0 0                   |               |             | 0.0    | 0.0            | 15.8                     | 0.3             | 0.1                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | SBUS             | 6.1<br>1.3          | 12.7                 | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   | 0.0   | 0.0 0               | .0 0.0     | 0.0         | 0.0                   | 0.0             | 0.0             | 0.0             | 0.0             | 0.0         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       | 0.0                | 0.0 0                   | 0.0 0.0       | 0.0         | 0.0    | 0.0            | 29.3<br>9.0              | 2.9             | 0.0                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              | 0.0               | 0.0      |
|                                     | SUM              | 5564                | 11527                |                    | 0.0             | 3.6     | 6.1                 | 2.3          | 3.1                  | 0.9   | 0.1   | 3.3                 | 6.1        | 2.3         | 3.1 3.0               |                 | 3.4             | 22.6            | 1.9             | 31.9        | 0.1          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       | 0.1                | 0.0 0                   |               | 0.0 0.0     |        |                |                          | 266.7           | 797.5                    | 0.0                      | 0.0          | 0.0                      | 0.3            | 0.0              | 0.3               |          |
|                                     |                  |                     |                      |                    |                 |         |                     |              |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |
|                                     |                  |                     |                      |                    |                 |         |                     |              |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |
|                                     |                  |                     |                      | TOG<br>RUNEX       | TOG<br>IDLEX    | TOG     | TOG                 | TOG<br>HOTSO | TOG<br>RUNLOS I      | ROG   |       | OG RI<br>REX DIL    | DG RO      |             |                       | NOx<br>IDLEX    | NOx<br>STREX    | CO<br>RUNEX     | CO<br>IDLEX     | CO<br>STREX | SOx<br>RUNEX | SOx<br>IDLEX |          |           |            |           |                    | M2.5 PM<br>MBW RUM      |               |             | PM10   | PMIU           | CO <sub>2</sub><br>RUNEX | CO <sub>2</sub> | CO <sub>2</sub><br>STREX | CH <sub>4</sub><br>RUNEX | CH4<br>IDLEX | CH <sub>4</sub><br>STREX | N₂0<br>RUNFX   | N₂0<br>IDLEX     | N₂O<br>STRFX R    | HFC      |
| ANNUAL                              |                  | ADT A               | Annual VMT           | (tpy)              | (tpy)           | (tpy)   |                     |              | S (tpy)              | (tpy) |       |                     | oy) AK (t  | py) S(tp    |                       | (tpy)           | (tpy)           | (tpy)           | (tpy)           | (tpy)       |              | (tpy)        | (tpy)    | (tpy)     | (tpy)      | (tpy)     | (tpy) (            | tpy) (tp                | y) (tpy)      | (tpy)       | (tpy)  | (tpy)          | (mt/yr)                  |                 | (mt/yr)                  | (mt/yr)                  | (mt/yr)      | (mt/yr)                  | (mt/yr)        | (mt/yr)          | (mt/yr) (         | mt/yr)   |
| tpy for CPs                         | HHDT             | 43974.8             | 91105.9              | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   | 0.0   | 0.0 0.0             | .0 0.0     | 0.0         | 0.1                   | 0.3             | 0.1             | 0.0             | 0.3             | 0.0         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       | 0.0                | 0.0 0                   | .0 0.0        | 0.0         | 0.0    | 0.0            | 120.4                    | 41.0            | 0.0                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              | 0.0               | 0.0      |
| mt/yr for GHG                       | LDA              | 980780.4            | 2031958.4            | 0.0                | 0.0             | 0.2     | 0.3                 | 0.1          | 0.2                  | 0.0   |       |                     | .3 0.1     |             |                       | 0.0             | 0.2             | 1.1             | 0.0             | 2.3         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               |             | 0.0    | 0.0            | 479.5<br>50.4            | 0.0             | 57.1                     | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
| Lbs/day x 365 x<br>lb/ton or lb/MT  | LDT1<br>LDT2     | 78092.4<br>458130.9 | 161790.0<br>949145.1 | 0.0                | 0.0             | 0.0     | 0.1                 | 0.0          | 0.0                  | 0.0   |       |                     | .1 0.0     |             | 0.0                   | 0.0             | 0.0             | 0.2             | 0.0             | 0.4         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 50.4<br>298.3            | 0.0             | 6.3<br>35.4              | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
| conv                                | LHDT1            | 64202.7             | 133013.8             | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   |       |                     | .0 0.0     |             | 0.1                   | 0.0             | 0.0             | 0.1             | 0.0             | 0.1         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 65.0                     | 0.6             | 0.9                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | LHDT2            | 17971.4             | 37232.8              | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   |       |                     | .0 0.0     |             | 0.0                   | 0.0             | 0.0             | 0.0             | 0.0             | 0.0         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 20.5                     | 0.3             | 0.1                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | MCY<br>MDV       | 50525.7<br>312283.5 | 104678.0<br>646981.9 | 0.1                | 0.0             | 0.1     | 0.1                 | 0.2          | 0.2                  | 0.1   |       |                     | 1 0.0      |             | 0.1                   | 0.0             | 0.0             | 1.4<br>0.6      | 0.0             | 0.5         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 19.8<br>250.0            | 0.0             | 2.4                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | MH               | 9329.7              | 19329.0              | 0.0                | 0.0             | 0.0     | 0.3                 | 0.1          | 0.0                  | 0.0   | 0.0   | 0.0 0.0             | .3 0.1     | L 0.0       | 0.0                   | 0.0             | 0.0             | 0.0             | 0.0             | 0.0         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       | 0.0                | 0.0 0                   | .0 0.0        | 0.0         | 0.0    | 0.0            | 29.4                     | 0.0             | 0.2                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              | 0.0               | 0.0      |
|                                     | MHDT             | 11800.6             | 24448.3              | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   |       |                     | .0 0.0     |             | 0.0                   | 0.0             | 0.0             | 0.0             | 0.0             | 0.0         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       | 0.0                | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 26.1                     | 1.8             | 0.1                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              | 0.0               | 0.0      |
|                                     | OBUS             | 915.0<br>2231.7     | 1895.6<br>4623.6     | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   |       |                     | .0 0.0     |             |                       | 0.0             | 0.0             | 0.0             | 0.0             | 0.0         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       |                    | 0.0 0                   |               | 0.0         | 0.0    | 0.0            | 2.6<br>4.8               | 0.0             | 0.0                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              |                   | 0.0      |
|                                     | UBUS             | 475.3               | 984.6                | 0.0                | 0.0             | 0.0     | 0.0                 | 0.0          | 0.0                  | 0.0   | 0.0   | 0.0 C               | .0 0.0     | 0.0         | 0.0                   | 0.0             | 0.0             | 0.0             | 0.0             | 0.0         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       | 0.0                | 0.0 0                   | 0.0 0.0       | 0.0         | 0.0    | 0.0            | 1.5                      | 0.0             | 0.0                      | 0.0                      | 0.0          | 0.0                      | 0.0            | 0.0              | 0.0               | 0.0      |
|                                     | SUM              |                     |                      | 0.2                | 0.0             | 0.7     | 1.1                 | 0.4          | 0.6                  | 0.2   | 0.0   | 0.6 1               | .1 0.4     | 1 0.6       | 0.5                   | 0.3             | 0.6             | 4.1             | 0.4             | 5.8         | 0.0          | 0.0          | 0.0      | 0.0       | 0.0        | 0.0       | 0.0                | 0.0 0                   | .0 0.0        | 0.0         | 0.0    | 0.0            | 1368.4                   | 44.2            | 132.0                    | 0.0                      | 0.0          | 0.1                      | 0.1            | 0.0              | 0.1               | 0.0      |
|                                     |                  |                     |                      |                    |                 |         |                     |              |                      |       |       |                     |            |             |                       |                 |                 |                 |                 |             |              |              |          |           |            |           |                    |                         |               |             |        |                |                          |                 |                          |                          |              |                          |                |                  |                   |          |

2030 Mobile Emissions

| Metrics                                         |                                                                                    | ADT                                                                                                                   | Annual VMT                                                                                                                   | Daily VMT                                                                            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | nversions                                                                                                                                                                                                                                                                                                                                                        |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                                                     |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
|-------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                 | Truck Stop<br>RV park                                                              | 5,326<br>238                                                                                                          | 3,528,368<br>678,819                                                                                                         |                                                                                      | fleet average<br>fleet average                                                          |                                                                                                                                                                                                                                                                                                                                                                  | <b>ays/yr</b> 38<br>tot 0                                                                                                                                                                                                                                                                                                                                        | 5.00050                                                                   |                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                                                     |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
|                                                 | total                                                                              | 5,564                                                                                                                 | 4,207,187                                                                                                                    | 11,527                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | tomt (<br>tolb                                                                                                                                                                                                                                                                                                                                                   | 00045                                                                     |                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                                                     |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
|                                                 |                                                                                    |                                                                                                                       |                                                                                                                              |                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | .0 10                                                                                                                                                                                                                                                                                                                                                            | 0.0011                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                                                     |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
| EFs and Fleet Mix                               |                                                                                    |                                                                                                                       |                                                                                                                              | 10                                                                                   | 10                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                               | 10                                                                        | 10                                                                                                                                                                                                                                                                                                                        | RU                                                                                       | RU                                                                                                                                                                                                                                                                                                                                                                                                                       | ко                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ко к                                                                                                                                                                                                                                                                                                                                                                                                                                                | о ко                                                                                                                                                                                                                                                                                                                                                | NU                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NU                                                                                   | NU                                                                                                                                                                                                                                                                                      | CO                                                                                                                                                                                                                                                                                                            | cu                                                                                                                                                                                                                                                                                                            | co                                                                                                                                                                                                                                                                                                                                                                    | 50 SI                                                                                 | o so                                                                                | ٢                                                                                   | ۲                                                                                   | ٢                                                                                                                                                                                                                                                                                                                                                                   | ٢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Р.                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       | ٢.                                                                                  | ٢                                                                                  | ٢                                                                                  | CO                                                                                                                        | cu                                                                                                                  | CU                                                                                                      | СН                                                                                    | CH                                                                                    | СН                                                                                    | N <sub>2</sub>                                                                        | N <sub>2</sub>                                                                            | N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HP                                                                   |
| From Caleemod<br>2022                           | Operatio                                                                           | Vehicl                                                                                                                | Fleet %                                                                                                                      | G<br>RU                                                                              | G                                                                                       | G<br>ST                                                                                                                                                                                                                                                                                                                                                          | G<br>DI                                                                                                                                                                                                                                                                                                                                                          | G<br>HO                                                                   | G<br>RU                                                                                                                                                                                                                                                                                                                   | G<br>RU                                                                                  | G<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                  | G<br>ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G G<br>DI H                                                                                                                                                                                                                                                                                                                                                                                                                                         | G<br>D RU                                                                                                                                                                                                                                                                                                                                           | RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x<br>ID                                                                              | x<br>ST                                                                                                                                                                                                                                                                                 | RU                                                                                                                                                                                                                                                                                                            | ID<br>LE                                                                                                                                                                                                                                                                                                      | ST<br>RE                                                                                                                                                                                                                                                                                                                                                              | נ א                                                                                   | x<br>ST                                                                             | M2<br>.5                                                                            | M2<br>.5                                                                            | M2<br>.5                                                                                                                                                                                                                                                                                                                                                            | M2<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M2<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                | V1 M                                                                                  | 1 M1<br>0                                                                           | M1<br>0                                                                            | M1<br>0                                                                            | RU                                                                                                                        | 2<br>ID                                                                                                             | ŝT                                                                                                      | RU                                                                                    | 1D                                                                                    | ≴<br>sτ                                                                               | 0<br>RU                                                                               | 0<br>ID                                                                                   | 0<br>ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C<br>RU                                                              |
| 2022                                            | nal Year                                                                           | е Туре                                                                                                                | Fieet %                                                                                                                      | NE                                                                                   | LE                                                                                      | RE                                                                                                                                                                                                                                                                                                                                                               | UR                                                                                                                                                                                                                                                                                                                                                               | TS                                                                        | NL                                                                                                                                                                                                                                                                                                                        | NE                                                                                       | LE                                                                                                                                                                                                                                                                                                                                                                                                                       | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UR T                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                     | NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LE                                                                                   | RE                                                                                                                                                                                                                                                                                      | X                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                             | X                                                                                                                                                                                                                                                                                                                                                                     | NE LE                                                                                 | RE                                                                                  | RU                                                                                  | ID                                                                                  | ST                                                                                                                                                                                                                                                                                                                                                                  | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P                                                                                                                                                                                                                                                                                                                                                                                                                       | RU ID                                                                                 | ST                                                                                  | P                                                                                  | P                                                                                  | NE                                                                                                                        | LE                                                                                                                  | RE                                                                                                      | NE                                                                                    | LE                                                                                    | RE                                                                                    | NE                                                                                    | LE                                                                                        | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NE<br>X                                                              |
|                                                 |                                                                                    | HHDT                                                                                                                  | 3.0749%                                                                                                                      | î                                                                                    | ĵ.                                                                                      | â                                                                                                                                                                                                                                                                                                                                                                | (6)                                                                                                                                                                                                                                                                                                                                                              | R.                                                                        | ¢                                                                                                                                                                                                                                                                                                                         | ĵ.                                                                                       | în                                                                                                                                                                                                                                                                                                                                                                                                                       | î.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 03<br>6                                                                                                                                                                                                                                                                                                                                           | <u>î</u> n                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - în                                                                                 | ĵ.                                                                                                                                                                                                                                                                                      | i                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                               | (g/                                                                                                                                                                                                                                                                                                                                                                   | à là                                                                                  | , în                                                                                | Y                                                                                   | ¥.                                                                                  | Y                                                                                                                                                                                                                                                                                                                                                                   | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         | , y                                                                                   | . NE                                                                                | Ŧ                                                                                  |                                                                                    | ĵ.                                                                                                                        | ĵ.                                                                                                                  | ĵ.                                                                                                      | - îni                                                                                 | - în                                                                                  | â                                                                                     | ĵ.                                                                                    | ĵ.                                                                                        | - în                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | î.                                                                   |
|                                                 | 2045<br>2045                                                                       | IDA                                                                                                                   | 3.0749% 47.4299%                                                                                                             |                                                                                      |                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                                           | 2                                                                                        | 0 *                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0                                                                                  | - 2                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       | - 0                                                                                   | 0                                                                                   |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                       | -                                                                                     | -                                                                                     |                                                                                       | -                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                    |
|                                                 | 2045                                                                               | LDT1                                                                                                                  | 3.0376%                                                                                                                      | 1                                                                                    | 0                                                                                       | ÷.                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                | ÷                                                                         | 1                                                                                                                                                                                                                                                                                                                         | ÷                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1                                                                                                                                                                                                                                                                                                                                                 | - ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                    | ÷.                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                             | £ 1                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                     |                                                                                     | 0                                                                                   | 0                                                                                   | - t                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                     | - 1                                                                                 | - 1                                                                                |                                                                                    | - 1                                                                                                                       | 0                                                                                                                   | - 1                                                                                                     | - 1                                                                                   | ō                                                                                     | 1                                                                                     | - ÷                                                                                   | 0                                                                                         | - t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                    |
|                                                 | 2045<br>2045                                                                       | LDT2                                                                                                                  | 24.3904%<br>2.8026%                                                                                                          |                                                                                      | 0                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                                           | -                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                     |                                                                                     | 0                                                                                   | 0                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0                                                                                   |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           | 0                                                                                                                   |                                                                                                         |                                                                                       | 0                                                                                     |                                                                                       |                                                                                       | 0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                    |
|                                                 | 2045                                                                               | LHDT1<br>LHDT2                                                                                                        | 0.7815%                                                                                                                      | - i                                                                                  |                                                                                         | ÷                                                                                                                                                                                                                                                                                                                                                                | ÷.                                                                                                                                                                                                                                                                                                                                                               | ÷.                                                                        | î                                                                                                                                                                                                                                                                                                                         | ÷.                                                                                       | ÷ ;                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÷.                                                                                   | ÷.                                                                                                                                                                                                                                                                                      | ÷                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                               | ÷ ;                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                     | 0                                                                                   | ÷.                                                                                  | ÷.                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | î î                                                                                                                                                                                                                                                                                                                                                                                                                     | ÷                                                                                     | 0                                                                                   | ÷                                                                                  | ÷                                                                                  |                                                                                                                           | ÷.                                                                                                                  | ÷                                                                                                       | ÷.                                                                                    | ÷                                                                                     | ÷                                                                                     | ÷.                                                                                    | ÷                                                                                         | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                    |
|                                                 | 2045                                                                               | MCY                                                                                                                   | 2.2319%                                                                                                                      |                                                                                      | Ő                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                | 1                                                                         | 1                                                                                                                                                                                                                                                                                                                         | 1                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | õ                                                                                    | 1                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                             | ō                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                     | Ő                                                                                   | 1                                                                                   | Ő                                                                                   |                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         | Ő                                                                                     |                                                                                     | 1                                                                                  |                                                                                    | 1                                                                                                                         | Ő                                                                                                                   | 1                                                                                                       | 1                                                                                     | ō                                                                                     | 1                                                                                     | 1                                                                                     | ō                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                    |
|                                                 | 2045                                                                               | MDV                                                                                                                   | 15.1077%                                                                                                                     |                                                                                      | 0                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                                           | -                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                     |                                                                                     | 0                                                                                   | 0                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                     |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           | 0                                                                                                                   |                                                                                                         |                                                                                       | 0                                                                                     |                                                                                       |                                                                                       | 0                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                    |
|                                                 | 2045<br>2045                                                                       | MH<br>MHDT                                                                                                            | 0.2431%<br>0.7267%                                                                                                           |                                                                                      | *                                                                                       |                                                                                                                                                                                                                                                                                                                                                                  | ÷.                                                                                                                                                                                                                                                                                                                                                               | ÷                                                                         | ÷                                                                                                                                                                                                                                                                                                                         | ÷.                                                                                       | * *                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                    | ÷.                                                                                                                                                                                                                                                                                      | i                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       | 0                                                                                   |                                                                                     | 0                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                   | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i i                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                     | 0                                                                                   | ÷                                                                                  | i                                                                                  |                                                                                                                           | *                                                                                                                   | ÷                                                                                                       | ÷                                                                                     |                                                                                       |                                                                                       |                                                                                       | *                                                                                         | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                    |
|                                                 | 2045                                                                               | OBUS                                                                                                                  | 0.0375%                                                                                                                      |                                                                                      | 1                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                | 1                                                                         | 1                                                                                                                                                                                                                                                                                                                         | 1                                                                                        | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                    | 1                                                                                                                                                                                                                                                                                       | :                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                             | 1 1                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                     | 0                                                                                   | 1                                                                                   | 0                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : :                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                     | ő                                                                                   | 1                                                                                  | :                                                                                  | 1                                                                                                                         | 1                                                                                                                   | 1                                                                                                       | 1                                                                                     | :                                                                                     | 1                                                                                     | 1                                                                                     | 1                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                    |
|                                                 | 2045                                                                               | SBUS                                                                                                                  | 0.1052%                                                                                                                      |                                                                                      | - 1                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                         | -                                                                                                                                                                                                                                                                                                                         | 1                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1                                                                                                                                                                                                                                                                                                                                                 | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1                                                                                  |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       | - 1                                                                                   | 0                                                                                   | - 1                                                                                 | 0                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ; ;                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                     | 0                                                                                   | - 1                                                                                |                                                                                    | - 1                                                                                                                       | - 1                                                                                                                 | 1.6                                                                                                     | - 1                                                                                   |                                                                                       | - 1                                                                                   | - 1                                                                                   | 1                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                    |
|                                                 | 2045                                                                               | UBUS                                                                                                                  | 0.0310%<br>metric                                                                                                            | 0<br>VMT                                                                             | 0<br>ADT                                                                                | ADT                                                                                                                                                                                                                                                                                                                                                              | ADT                                                                                                                                                                                                                                                                                                                                                              | 0<br>ADT                                                                  | ADT                                                                                                                                                                                                                                                                                                                       | 0<br>VMT                                                                                 | ADT AD                                                                                                                                                                                                                                                                                                                                                                                                                   | T AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>T ADT                                                                                                                                                                                                                                                                                                                                                                                                                                          | ADT                                                                                                                                                                                                                                                                                                                                                 | VMT                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>ADT                                                                             | ADT                                                                                                                                                                                                                                                                                     | VMT                                                                                                                                                                                                                                                                                                           | 0<br>ADT                                                                                                                                                                                                                                                                                                      | ADT VN                                                                                                                                                                                                                                                                                                                                                                | 0<br>ADT                                                                              | 0<br>ADT                                                                            | VMT                                                                                 | 0<br>ADT                                                                            | 0<br>ADT                                                                                                                                                                                                                                                                                                                                                            | VMT V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MT VM                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>I ADT                                                                            | 0<br>ADT                                                                            | VMT                                                                                | VMT                                                                                | VMT                                                                                                                       | 0<br>ADT                                                                                                            | ADT                                                                                                     | VMT                                                                                   | 0<br>ADT                                                                              | 0<br>ADT                                                                              | VMT                                                                                   | 0<br>ADT                                                                                  | ADT V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MT                                                                   |
|                                                 |                                                                                    |                                                                                                                       | Incline                                                                                                                      |                                                                                      | ADI                                                                                     | ADI                                                                                                                                                                                                                                                                                                                                                              | 201                                                                                                                                                                                                                                                                                                                                                              | ADI                                                                       | ADI                                                                                                                                                                                                                                                                                                                       |                                                                                          | AD1 AD                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 101                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADI                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 201                                                                                  | ADI                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               | ADI                                                                                                                                                                                                                                                                                                           | AD1 11                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | ADT                                                                                 |                                                                                     | ADI                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     | N and TW are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       | 201                                                                                 |                                                                                    |                                                                                    |                                                                                                                           | ADI                                                                                                                 | 201                                                                                                     |                                                                                       | ADI                                                                                   | ADI                                                                                   | 41411                                                                                 | 201                                                                                       | AD1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |
|                                                 |                                                                                    |                                                                                                                       |                                                                                                                              |                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  | TOG                                                                       |                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ROG                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                                                     |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
|                                                 |                                                                                    |                                                                                                                       |                                                                                                                              |                                                                                      |                                                                                         | TOG<br>TREX E                                                                                                                                                                                                                                                                                                                                                    | HUDN F                                                                                                                                                                                                                                                                                                                                                           | OTSO n                                                                    | TOG I<br>JNLOS RI                                                                                                                                                                                                                                                                                                         |                                                                                          | ROG RO<br>DLEX STR                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HOTSO                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROG                                                                                                                                                                                                                                                                                                                                                 | NOx<br>RUNEX                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | CO SO<br>TREX RUN                                                                                                                                                                                                                                                                                                                                                     | SOx<br>X IDLEX                                                                        | SOx<br>STREX                                                                        | PM2.5<br>RUNEX                                                                      | PM2.5<br>IDLEX                                                                      | PM2.5 F                                                                                                                                                                                                                                                                                                                                                             | PM2.5 PN<br>PMTW PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.5 PM1                                                                                                                                                                                                                                                                                                                                                                                                                | 0 PM10<br>X IDLEX                                                                     | PM10<br>STDEX                                                                       | PM10<br>PMTW                                                                       | PM10<br>PMBW                                                                       | CO <sub>2</sub>                                                                                                           | CO <sub>2</sub><br>IDLEX                                                                                            | CO <sub>2</sub><br>STREX                                                                                |                                                                                       | CH4<br>IDLEX                                                                          | CH4<br>STREX                                                                          | N <sub>2</sub> O<br>RUNEX                                                             |                                                                                           | N <sub>2</sub> O H<br>STREX RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |
| DAILY                                           |                                                                                    |                                                                                                                       | aily VMT                                                                                                                     | (lb/d)                                                                               |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  | (h) df                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          | lb/d) (lb/                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S (lb/d)                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | lb/d) (lb/                                                                                                                                                                                                                                                                                                                                                            |                                                                                       |                                                                                     | (lb/d)                                                                              |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /d) (lb/e                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |                                                                                     | (lb/d)                                                                             |                                                                                    | (lb/d)                                                                                                                    |                                                                                                                     |                                                                                                         |                                                                                       | (lb/d)                                                                                | (lb/d)                                                                                |                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /d)                                                                  |
| EF (in g/ADT or                                 | HHDT                                                                               | 171.1                                                                                                                 | 354.4                                                                                                                        | 0.0                                                                                  | 0.2                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  |                                                                           | 0.0                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                      | 0.2 0.                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.1                                                                                  | 0.7                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                           | 2.6                                                                                                                                                                                                                                                                                                           | 0.0 0.                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                | 0.1                                                                                | 876.4                                                                                                                     | 330.6                                                                                                               | 0.0                                                                                                     | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.1                                                                                   | 0.1                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                  |
| g/VMT) * ADT/VMT                                | LDA                                                                                | 2638.8                                                                                                                | 5467.0                                                                                                                       | 0.0                                                                                  | 0.0                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                              | 1.1                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                  | 0.8                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | 8.3 0.                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       | 0.0                                                                                 | 0.1                                                                                | 0.1                                                                                | 2509.3                                                                                                                    | 0.0                                                                                                                 | 288.9                                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.2                                                                                   | 0.0                                                                                   | 0.0                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                  |
| * g/lb conv                                     | LDT1<br>LDT2                                                                       | 169.0<br>1357.0                                                                                                       | 350.1<br>2811.4                                                                                                              | 0.0                                                                                  | 0.0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                  | 0.1                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | 0.6 0.<br>6.0 0.                                                                                                                                                                                                                                                                                                                                                      |                                                                                       | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                | 0.0                                                                                | 205.9<br>1750.2                                                                                                           | 0.0                                                                                                                 | 23.9<br>202.5                                                                                           | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0<br>1.0                                                           |
|                                                 | LHDT1                                                                              | 155.9                                                                                                                 | 323.0                                                                                                                        | 0.0                                                                                  | 0.0                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                       |                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                  | 0.1                                                                                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                               | 0.4 0.                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                | 0.0                                                                                | 191.3                                                                                                                     | 2.8                                                                                                                 | 3.1                                                                                                     | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                  |
|                                                 | LHDT2<br>MCY                                                                       | 43.5                                                                                                                  | 90.1                                                                                                                         | 0.0                                                                                  | 0.0                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                       |                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                  | 0.0                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                               | 0.1 0.                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                | 0.0                                                                                | 63.4                                                                                                                      | 1.3                                                                                                                 | 0.4                                                                                                     | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                  |
|                                                 | MDV                                                                                | 124.2<br>840.5                                                                                                        | 257.3<br>1741.4                                                                                                              | 0.5                                                                                  | 0.0                                                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                              | 1.0                                                                       |                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                  | 0.0                                                                                                                                                                                                                                                                                     | 5.2<br>2.1                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               | 2.1 0.<br>3.8 0.                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                | 0.0                                                                                | 104.4                                                                                                                     | 0.0                                                                                                                 | 10.6<br>149.6                                                                                           | 0.1                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0<br>1.0                                                           |
|                                                 | MH                                                                                 | 13.5                                                                                                                  | 28.0                                                                                                                         | 0.0                                                                                  | 0.0                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                              | 0.4                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                       | 0.0                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                      | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                  | 0.0                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                           | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                               |                                                                                       | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                   | 0.0                                                                                 | 0.0                                                                                | 0.0                                                                                | 91.9                                                                                                                      | 0.0                                                                                                                 | 0.5                                                                                                     | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                  |
|                                                 | MHDT<br>OBUS                                                                       | 40.4<br>2.1                                                                                                           | 83.8<br>4.3                                                                                                                  | 0.0                                                                                  | 0.0                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                  | 0.0                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | 0.0 0.                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       | 0.0                                                                                 | 0.0<br>0.0                                                                         | 0.0                                                                                | 112.4<br>8.0                                                                                                              | 11.9<br>0.3                                                                                                         | 0.4                                                                                                     | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0<br>0.0                                                           |
|                                                 | SBUS                                                                               | 5.9                                                                                                                   | 4.5                                                                                                                          | 0.0                                                                                  | 0.0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                  | 0.0                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | 0.0 0.                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       | 0.0                                                                                 | 0.0                                                                                | 0.0                                                                                | 16.7                                                                                                                      | 2.6                                                                                                                 | 0.0                                                                                                     | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                  |
|                                                 | UBUS                                                                               | 1.7                                                                                                                   | 3.6                                                                                                                          | 0.0                                                                                  | 0.0                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                       |                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                  | 0.0                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                               |                                                                                       | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       | 0.0                                                                                 | 0.0                                                                                | 0.0                                                                                | 0.1                                                                                                                       | 0.0                                                                                                                 | 0.0                                                                                                     | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   | 0.0                                                                                   |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                  |
|                                                 | SUM                                                                                | 5564                                                                                                                  | 11527                                                                                                                        | 0.7                                                                                  | 0.2                                                                                     | 1.9                                                                                                                                                                                                                                                                                                                                                              | 3.5                                                                                                                                                                                                                                                                                                                                                              | 1.5                                                                       | 2.4                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.5 1.                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 2.4                                                                                                                                                                                                                                                                                                                                               | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.2                                                                                  | 2.7                                                                                                                                                                                                                                                                                     | 16.0                                                                                                                                                                                                                                                                                                          | 2.8                                                                                                                                                                                                                                                                                                           | 21.4                                                                                                                                                                                                                                                                                                                                                                  | 0.1 0.                                                                                | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 0.                                                                                | 0 0.0                                                                               | 0.2                                                                                | 0.3                                                                                | 7225.3                                                                                                                    | 349.5                                                                                                               | 680.0                                                                                                   | 0.1                                                                                   | 0.0                                                                                   | 0.4                                                                                   | 0.3                                                                                   | 0.1                                                                                       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                  |
|                                                 |                                                                                    |                                                                                                                       |                                                                                                                              |                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                                                     |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
|                                                 |                                                                                    |                                                                                                                       |                                                                                                                              |                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                                                                     |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                    |                                                                                    |                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |
|                                                 |                                                                                    |                                                                                                                       |                                                                                                                              | TOG                                                                                  |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                          | ROG RO                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ROG                                                                                                                                                                                                                                                                                                                                                 | NOx                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOx                                                                                  | NOx                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | co so                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       | SOx                                                                                 |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                     | PM2.5 PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                    |                                                                                    | CO2                                                                                                                       | CO2                                                                                                                 | CO2                                                                                                     |                                                                                       | CH4                                                                                   | CH4                                                                                   | N <sub>2</sub> O                                                                      |                                                                                           | N <sub>2</sub> O H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |
|                                                 |                                                                                    |                                                                                                                       |                                                                                                                              | RUNEX                                                                                | IDLEX S                                                                                 | TREX D                                                                                                                                                                                                                                                                                                                                                           | UURN F                                                                                                                                                                                                                                                                                                                                                           | OTSO RU                                                                   | JNLOS R                                                                                                                                                                                                                                                                                                                   | JNEX I                                                                                   | ROG RO<br>DLEX STR<br>tpy) (tp                                                                                                                                                                                                                                                                                                                                                                                           | EX DIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RN HOTS                                                                                                                                                                                                                                                                                                                                                                                                                                             | RUNLOS                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IDLEX                                                                                | STREX                                                                                                                                                                                                                                                                                   | RUNEX I                                                                                                                                                                                                                                                                                                       | DLEX S                                                                                                                                                                                                                                                                                                        | CO SO<br>TREX RUN<br>TPY) (tp)                                                                                                                                                                                                                                                                                                                                        | X IDLEX                                                                               |                                                                                     | PM2.5<br>RUNEX<br>(tpy)                                                             |                                                                                     | STREX F                                                                                                                                                                                                                                                                                                                                                             | PMTW PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                     | PM10<br>PMTW<br>(tpy)                                                              | PMBW                                                                               |                                                                                                                           | IDLEX                                                                                                               |                                                                                                         | RUNEX                                                                                 |                                                                                       | CH <sub>4</sub><br>STREX<br>(mt/yr)                                                   |                                                                                       | IDLEX S                                                                                   | STREX RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NEX<br>!/yr)                                                         |
| ANNUAL<br>tpy for CPs                           | HHDT                                                                               | ADT                                                                                                                   | Annual VMT<br>129367.6                                                                                                       |                                                                                      | IDLEX S                                                                                 | TREX D                                                                                                                                                                                                                                                                                                                                                           | UURN F                                                                                                                                                                                                                                                                                                                                                           | OTSO RU                                                                   | UNLOS RI<br>(tpy) (                                                                                                                                                                                                                                                                                                       | JNEX II<br>tpy) (                                                                        | DLEX STR                                                                                                                                                                                                                                                                                                                                                                                                                 | EX DIU<br>y) (tp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RN HOTS<br>y) AK (tp)                                                                                                                                                                                                                                                                                                                                                                                                                               | RUNLOS                                                                                                                                                                                                                                                                                                                                              | RUNEX                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IDLEX                                                                                | STREX                                                                                                                                                                                                                                                                                   | RUNEX I                                                                                                                                                                                                                                                                                                       | DLEX S<br>(tpy) (                                                                                                                                                                                                                                                                                             | TREX RUN                                                                                                                                                                                                                                                                                                                                                              | X IDLEX                                                                               | STREX                                                                               | RUNEX                                                                               | IDLEX                                                                               | STREX F                                                                                                                                                                                                                                                                                                                                                             | PMTW PN<br>(tpy) (t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IBW RUNI                                                                                                                                                                                                                                                                                                                                                                                                                | X IDLEX                                                                               | STREX                                                                               | PMTW                                                                               | PMBW                                                                               | RUNEX                                                                                                                     | IDLEX                                                                                                               | STREX                                                                                                   | RUNEX                                                                                 | IDLEX                                                                                 | STREX                                                                                 | RUNEX                                                                                 | IDLEX S                                                                                   | sTREX RU<br>mt/yr) (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |
| tpy for CPs<br>mt/yr for GHG                    | HHDT<br>LDA                                                                        | 62442.8<br>963165.9                                                                                                   | 129367.6<br>1995465.1                                                                                                        | RUNEX<br>(tpy)<br>0.0<br>0.0                                                         | IDLEX 5<br>(tpy)<br>0.0<br>0.0                                                          | (tpy)<br>0.0<br>0.1                                                                                                                                                                                                                                                                                                                                              | 0.0<br>0.2                                                                                                                                                                                                                                                                                                                                                       | 0TSO RU<br>(tpy) S<br>0.0<br>0.0                                          | UNLOS RI<br>(tpy) (<br>0.0<br>0.1                                                                                                                                                                                                                                                                                         | UNEX 18<br>(tpy) (<br>0.0<br>0.0                                                         | DLEX         STR           tpy)         (tp)           0.0         0.0           0.0         0.0                                                                                                                                                                                                                                                                                                                         | EX DIU<br>y) (tp)<br>0 0.0<br>1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RN HOTSI<br>y) AK (tp)<br>0 0.0<br>2 0.0                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0<br>0.1                                                                                                                                                                                                                                                                                                                                          | (tpy)<br>0.2<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1DLEX<br>(tpy)<br>0.4<br>0.0                                                         | (tpy)<br>0.1<br>0.1                                                                                                                                                                                                                                                                     | RUNEX I<br>(tpy)<br>0.0<br>0.9                                                                                                                                                                                                                                                                                | DLEX S<br>(tpy) (<br>0.5<br>0.0                                                                                                                                                                                                                                                                               | TREX         RUN           tpy)         (tp)           0.0         0.1           1.5         0.1                                                                                                                                                                                                                                                                      | 0.0<br>0.0                                                                            | STREX<br>(tpy)<br>0.0<br>0.0                                                        | RUNEX<br>(tpy)<br>0.0<br>0.0                                                        | 1DLEX<br>(tpy)<br>0.0<br>0.0                                                        | STREX F<br>(tpy)<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                      | MTW PN<br>(tpy) (t<br>0.0 (<br>0.0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IBW RUNI<br>py) (tpy<br>1.0 0.0<br>1.0 0.0                                                                                                                                                                                                                                                                                                                                                                              | (tpy)                                                                                 | STREX<br>(tpy)<br>0.0<br>0.0                                                        | PMTW<br>(tpy)<br>0.0<br>0.0                                                        | PMBW<br>(tpy)<br>0.0<br>0.0                                                        | RUNEX<br>(mt/yr)<br>145.1<br>415.4                                                                                        | IDLEX<br>(mt/yr)<br>54.7<br>0.0                                                                                     | STREX<br>(mt/yr)<br>0.0<br>47.8                                                                         | RUNEX<br>(mt/yr)<br>0.0<br>0.0                                                        | IDLEX<br>(mt/yr)<br>0.0<br>0.0                                                        | STREX<br>(mt/yr)<br>0.0<br>0.0                                                        | RUNEX<br>(mt/yr)<br>0.0<br>0.0                                                        | IDLEX S<br>(mt/yr) (<br>0.0<br>0.0                                                        | STREX RU<br>(mt/yr) (m<br>0.0 (<br>0.0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/yr)<br>1.0                                                         |
| tpy for CPs<br>mt/yr for GHG<br>Lbs/day x 365 x | HHDT<br>LDA<br>LDT1                                                                | 62442.8<br>963165.9<br>61684.7                                                                                        | 129367.6<br>1995465.1<br>127797.0                                                                                            | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0                                                  | 1DLEX 5<br>(tpy)<br>0.0<br>0.0<br>0.0                                                   | (tpy)<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                                       | 0.0<br>0.2<br>0.0                                                                                                                                                                                                                                                                                                                                                | 0TSO RL<br>(tpy) S<br>0.0<br>0.0<br>0.0                                   | 0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                         | JNEX 10<br>(tpy) (<br>0.0<br>0.0<br>0.0                                                  | DLEX         STR           tpy)         (tp;           0.0         0.0           0.0         0.0           0.0         0.0                                                                                                                                                                                                                                                                                               | EX DIU<br>(tp:<br>) (tp:<br>) 0.0.1<br>0 0.0.1<br>0 0.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RN HOTS<br>y) AK (tp)<br>0 0.0<br>2 0.0<br>0 0.0<br>0 0.0                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                            | (tpy)<br>0.2<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                          | IDLEX<br>(tpy)<br>0.4<br>0.0<br>0.0                                                  | (tpy)<br>0.1<br>0.1<br>0.0                                                                                                                                                                                                                                                              | RUNEX I<br>(tpy)                                                                                                                                                                                                                                                                                              | DLEX S<br>(tpy) (<br>0.5<br>0.0<br>0.0                                                                                                                                                                                                                                                                        | TREX         RUN           tpy)         (tp)           0.0         0.0           1.5         0.0           0.1         0.0                                                                                                                                                                                                                                            | (tpy)                                                                                 | STREX<br>(tpy)                                                                      | RUNEX<br>(tpy)                                                                      | IDLEX<br>(tpy)<br>0.0                                                               | STREX F<br>(tpy)<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                               | MTW PN<br>(tpy) (t<br>0.0 0<br>0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IBW RUN<br>py) (tpy<br>0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                          | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0                                                 | STREX<br>(tpy)<br>0.0<br>0.0<br>0.0                                                 | PMTW<br>(tpy)<br>0.0<br>0.0<br>0.0                                                 | PMBW<br>(tpy)<br>0.0<br>0.0<br>0.0                                                 | RUNEX<br>(mt/yr)<br>145.1<br>415.4<br>34.1                                                                                | IDLEX<br>(mt/yr)<br>54.7<br>0.0<br>0.0                                                                              | STREX<br>(mt/yr)<br>0.0<br>47.8<br>4.0                                                                  | RUNEX<br>(mt/yr)                                                                      | IDLEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0                                                 | STREX<br>(mt/yr)<br>0.0<br>0.0<br>0.0                                                 | RUNEX<br>(mt/yr)                                                                      | IDLEX S<br>(mt/yr) (<br>0.0<br>0.0<br>0.0                                                 | STREX RU<br>mt/yr) (m<br>0.0 (<br>0.0 (<br>0.0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t/yr)<br>1.0<br>1.0                                                  |
| tpy for CPs<br>mt/yr for GHG                    | HHDT<br>LDA<br>LDT1<br>LDT2<br>LHDT1                                               | 62442.8<br>963165.9<br>61684.7<br>495299.7<br>56911.8                                                                 | 129367.6<br>1995465.1<br>127797.0<br>1026150.7<br>117908.7                                                                   | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 1DLEX 5<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                              | (tpy)<br>0.0<br>0.1<br>0.0<br>0.1<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                  | 0.0<br>0.2<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 0.0<br>0.1<br>0.1<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                                      | JNEX 10<br>(tpy) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | DLEX         STR           tpy)         (tp)           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                                                                                                                                                                                 | EX DIUI<br>y) (tp)<br>0 0.1<br>1 0.1<br>1 0.1<br>0 0.1<br>0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RN         HOTSI           y)         AK (tp)           0         0.0           2         0.0           0         0.0           1         0.0           0         0.0                                                                                                                                                                                                                                                                               | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                                    | RUNEX<br>(tpy)<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                            | 1DLEX<br>(tpy)<br>0.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 0.1<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                  | RUNEX I<br>(tpy)<br>0.0<br>0.9<br>0.1<br>0.6<br>0.0                                                                                                                                                                                                                                                           | DLEX S<br>(tpy) (<br>0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                   | TREX         RUN           tpy)         (tp)           0.0         0.0           1.5         0.0           0.1         0.0           1.1         0.0           0.1         0.0                                                                                                                                                                                        | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | 1DLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | STREX F<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                          | PMTW PN<br>(tpy) (t<br>0.0 (t<br>0.0 (t<br>0.0 (t)<br>0.0 (t)<br>0.0 (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IBW RUNI<br>py) (tpy<br>1.0 0.0<br>1.0 0.0<br>1.0 0.0<br>1.0 0.0                                                                                                                                                                                                                                                                                                                                                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                  | 0.0<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                              | PMTW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | PMBW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | RUNEX<br>(mt/yr)<br>145.1<br>415.4<br>34.1<br>289.8<br>31.7                                                               | IDLEX<br>(mt/yr)<br>54.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.5                                                         | STREX<br>(mt/yr)<br>0.0<br>47.8                                                                         | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                         | STREX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | RUNEX<br>(mt/yr)<br>0.0<br>0.0                                                        | IDLEX S<br>(mt/yr) (<br>0.0<br>0.0                                                        | STREX RU<br>(mt/yr) (m<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | //yr)<br>1.0<br>1.0<br>1.0<br>1.0                                    |
| tpy for CPs<br>mt/yr for GHG<br>Lbs/day x 365 x | HHDT<br>LDA<br>LDT1<br>LDT2<br>LHDT1<br>LHDT2                                      | 62442.8<br>963165.9<br>61684.7<br>495299.7<br>56911.8<br>15871.0                                                      | 129367.6<br>1995465.1<br>127797.0<br>1026150.7<br>117908.7<br>32881.3                                                        | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 1DLEX 5<br>(tpy) 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                          | TREX         E           0.0         0.1           0.0         0.1           0.0         0.1           0.0         0.1                                                                                                                                                                                                                                           | 0.0<br>0.2<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | UNLOS R<br>(tpy) (<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0                                                                                                                                                                                                                                                | JNEX II<br>(tpy) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | DLEX         STR           tpy)         (tp)           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                                                                                                   | EX DIUI<br>y) (tp)<br>0 0.1<br>1 0.1<br>1 0.1<br>1 0.1<br>0 0.1<br>0 0.1<br>0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RN HOTSI<br>y) AK (tp)<br>0 0.0<br>2 0.0<br>0 0.0<br>1 0.0<br>1 0.0<br>0 0.0<br>0 0.0                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0                                           | 0.2<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                | 0.4<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                               | 0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0                                                                                                                                                                                                                                    | RUNEX I<br>(tpy)<br>0.0<br>0.9<br>0.1<br>0.6<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                             | DLEX S<br>(tpy) (<br>0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                     | TREX         RUN           tpy)         (tp)           0.0         0.0           1.5         0.0           0.1         0.0           1.1         0.0           0.1         0.0           0.1         0.0                                                                                                                                                              | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | STREX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | 1DLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | STREX (tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                 | PMTW         PM           0.0         (t           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0                                                                                                                                                                                                                                                                                                          | IBW RUN<br>py) (tpy<br>1.0 0.0<br>1.0 0.0<br>1.0 0.0<br>1.0 0.0                                                                                                                                                                                                                                                                                                                                                         | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | STREX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0              | PMTW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | PMBW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | RUNEX<br>(mt/yr)<br>145.1<br>415.4<br>34.1<br>289.8<br>31.7<br>10.5                                                       | IDLEX<br>(mt/yr)<br>54.7<br>0.0<br>0.0<br>0.0<br>0.5<br>0.2                                                         | STREX<br>(mt/yr)<br>0.0<br>47.8<br>4.0<br>33.5<br>0.5<br>0.1                                            | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                           | STREX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                     | RUNEX<br>(mt/yr)<br>0.0<br>0.0                                                        | IDLEX S<br>(mt/yr) (<br>0.0<br>0.0<br>0.0<br>0.0                                          | TREX RU<br>mt/yr) (m<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (<br>0.0 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | //yr)<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             |
| tpy for CPs<br>mt/yr for GHG<br>Lbs/day x 365 x | HHDT<br>LDA<br>LDT1<br>LDT2<br>LHDT1                                               | 62442.8<br>963165.9<br>61684.7<br>495299.7<br>56911.8                                                                 | 129367.6<br>1995465.1<br>127797.0<br>1026150.7<br>117908.7                                                                   | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 1DLEX 5<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                              | (tpy)<br>0.0<br>0.1<br>0.0<br>0.1<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                  | 0.0<br>0.2<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | UNLOS R<br>(tpy) (<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.2                                                                                                                                                                                                                                  | JNEX II<br>(tpy) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.  | DLEX         STR           tpy)         (tp)           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                                                                                                                                                                                 | EX DIUI<br>y) (tp)<br>0 0.1<br>1 0.1<br>1 0.1<br>1 0.1<br>0 0.1<br>0 0.1<br>0 0.1<br>0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RN HOTS<br>y) AK (tp)<br>0 0.0<br>2 0.0<br>0 0.0<br>1 0.0<br>0 0.0<br>1 0.0<br>1 0.2                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                                                    | RUNEX<br>(tpy)<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                            | 1DLEX<br>(tpy)<br>0.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 0.1<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                                                    | RUNEX I<br>(tpy)<br>0.0<br>0.9<br>0.1<br>0.6<br>0.0                                                                                                                                                                                                                                                           | DLEX S<br>(tpy) (<br>0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                       | TREX         RUN           tpy)         (tp)           0.0         0.0           1.5         0.0           0.1         0.0           1.1         0.0           0.1         0.0                                                                                                                                                                                        | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | 1DLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | STREX F<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                          | PMTW PN<br>(tpy) (t<br>0.0 (t<br>0.0 (t<br>0.0 (t)<br>0.0 (t)<br>0.0 (t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IBW RUNI<br>py) (tpy<br>1.0 0.0<br>1.0 0.0<br>1.0 0.0<br>1.0 0.0                                                                                                                                                                                                                                                                                                                                                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                  | 0.0<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                              | PMTW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | PMBW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | RUNEX<br>(mt/yr)<br>145.1<br>415.4<br>34.1<br>289.8<br>31.7                                                               | IDLEX<br>(mt/yr)<br>54.7<br>0.0<br>0.0<br>0.0<br>0.0<br>0.5                                                         | STREX<br>(mt/yr)<br>0.0<br>47.8<br>4.0<br>33.5<br>0.5                                                   | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                         | STREX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | RUNEX<br>(mt/yr)<br>0.0<br>0.0                                                        | IDLEX 5<br>(mt/yr) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                            | STREX         RU           imt/yr)         (m           0.0         (m                                                                                                                                                                                                         | //yr)<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                             |
| tpy for CPs<br>mt/yr for GHG<br>Lbs/day x 365 x | HHDT<br>LDA<br>LDT1<br>LDT2<br>LHDT1<br>LHDT2<br>MCY<br>MDV<br>MH                  | 62442.8<br>963165.9<br>61684.7<br>495299.7<br>56911.8<br>15871.0<br>45323.3<br>306793.9<br>4936.0                     | 129367.6<br>1995465.1<br>127797.0<br>1026150.7<br>117908.7<br>32881.3<br>93899.8<br>635608.5<br>10226.4                      | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0 | 1DLEX 5<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.   | TREX         E           0.0         0.1           0.0         0.1           0.0         0.1           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.0         0.1           0.0         0.1           0.0         0.1           0.1         0.1           0.1         0.1                           | 0.0<br>0.2<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | UNLOS RI<br>(tpy) (<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0               | JNEX IE<br>(tpy) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                | LEX         STR           (tpy)         (tp)           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                                               | EX DIU<br>(tp)<br>(tp)<br>0 0.1<br>1 0.2<br>0 0.1<br>1 0.2<br>0 0.1<br>0 0.1<br>1 0.2<br>0 0.2<br>1 0.2<br>0 0.2<br>1 0.2<br>0 0.2<br>1 0.2<br>0 0.3<br>0 0 | RN         HOTS/<br>P(y)           0         0.0           2         0.0           0         0.0           1         0.0           0         0.0           1         0.0           1         0.0           1         0.0           1         0.0           1         0.0           1         0.0                                                                                                                                                    | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.2<br>0.1<br>0.0<br>0.2<br>0.1<br>0.0                                                                                                                                                                                                                                        | RUNEX<br>(tpy)<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                | 1DLEX<br>(tpy)<br>0.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | (tpy)<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                      | RUNEX I<br>(tpy)<br>0.0<br>0.9<br>0.1<br>0.6<br>0.0<br>0.0<br>0.0<br>0.9<br>0.4<br>0.0                                                                                                                                                                                                                        | DLEX         S'           (tpy)         (           0.5         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                           | TREX         RUN           (tpy)         (tp)           0.0         0.1           1.5         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.2         0.2           0.3         0.2           0.4         0.2           0.0         0.2 | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.          | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 1DLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX         F           (tpy)         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                     | PMTW         PN           (tpy)         (t           0.0         (t                                                                                                                                          | IBW         RUNI           py)         (tp)           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0                                                     | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.          | PMTW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | PMBW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(mt/yr)<br>145.1<br>415.4<br>34.1<br>289.8<br>31.7<br>10.5<br>17.3<br>214.4<br>15.2                              | IDLEX<br>(mt/yr)<br>54.7<br>0.0<br>0.0<br>0.0<br>0.5<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | STREX<br>(mt/yr)<br>0.0<br>47.8<br>4.0<br>33.5<br>0.5<br>0.1<br>1.8<br>24.8<br>0.1                      | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | IDLEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(mt/yr)<br>0.0<br>0.0                                                        | IDLEX 5<br>(mt/yr) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX         RU           0.0         (m           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (           0.0         (                                                                                                                                                  | //yr)<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0        |
| tpy for CPs<br>mt/yr for GHG<br>Lbs/day x 365 x | HHDT<br>LDA<br>LDT1<br>LDT2<br>LHDT1<br>LHDT2<br>MCY<br>MDV<br>MH<br>MHDT          | 62442.8<br>963165.9<br>61684.7<br>495299.7<br>56911.8<br>15871.0<br>45323.3<br>306793.9<br>4936.0<br>14756.4          | 129367.6<br>1995465.1<br>127797.0<br>1026150.7<br>117908.7<br>32881.3<br>93899.8<br>635608.5<br>10226.4<br>30572.0           | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0 | 1DLEX 5<br>(tpy) 5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | TREX         E           0.0         0.1           0.1         0.0           0.1         0.1           0.0         0.1           0.0         0.0           0.1         0.0           0.0         0.1           0.0         0.1           0.0         0.1           0.0         0.1           0.1         0.1           0.1         0.1           0.0         0.0 | NURN         F           (tpy)         A           0.0         0.2           0.0         0.1           0.0         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1                                                                                                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | UNLOS RI<br>(tpy) (<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0 | JNEX II<br>(tpy) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0 | DLEX         STR           tpy)         (tp)           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                     | EX DIU<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)<br>(tp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RN         HOTS           y)         AK (tp)           0         0.0           2         0.0           0         0.0           1         0.0           0         0.0           1         0.0           1         0.0           1         0.0           1         0.0           1         0.0           0         0.0                                                                                                                                | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0                                                                                                                                                                                                                                                                           | RUNEX<br>(tpy)<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                | 1DLEX<br>(tpy)<br>0.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | (tpy)<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.1                                                                                             | RUNEX I<br>(tpy)<br>0.0<br>0.9<br>0.1<br>0.6<br>0.0<br>0.0<br>0.0<br>0.9<br>0.4<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                          | DLEX         S'           0.5         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0 | TREX         RUN           (tpy)         (tp)           0.0         0.0           1.5         0.0           0.1         0.1           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.4         0.0           0.7         0.0           0.0         0.0 | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.          | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 1DLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX         F           (tpy)         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                     | PMTW         PN           (tpy)         (t           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0           0.0         0                                                                                                                                                                                                        | IBW         RUNI           py)         (tp)           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0                           | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.               | (tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.          | PMTW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | PMBW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(mt/yr)<br>145.1<br>415.4<br>34.1<br>289.8<br>31.7<br>10.5<br>17.3<br>214.4<br>15.2<br>18.6                      | IDLEX<br>(mt/yr)<br>54.7<br>0.0<br>0.0<br>0.0<br>0.5<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2.0               | STREX<br>(mt/yr)<br>0.0<br>47.8<br>4.0<br>33.5<br>0.5<br>0.1<br>1.8<br>24.8<br>0.1<br>0.1<br>0.1        | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | IDLEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | IDLEX \$ (mt/yr) ( 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                 | STREX         RU           (mt/yr)         (m           0.0         (m                                                                                                     | //yr)<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 |
| tpy for CPs<br>mt/yr for GHG<br>Lbs/day x 365 x | HHDT<br>LDA<br>LDT1<br>LDT2<br>LHDT1<br>LHDT2<br>MCY<br>MDV<br>MH                  | 62442.8<br>963165.9<br>61684.7<br>495299.7<br>56911.8<br>15871.0<br>45323.3<br>306793.9<br>4936.0                     | 129367.6<br>1995465.1<br>127797.0<br>1026150.7<br>117908.7<br>32881.3<br>93899.8<br>635608.5<br>10226.4                      | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0 | 1DLEX 5<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.   | TREX         E           0.0         0.1           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.0         0.0                                                     | NURN         F           (tpy)         A           0.0         0.2           0.0         0.1           0.0         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1                                                                                                         | OTSO RL<br>(tpy) S<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | JNLOS R<br>(tpy) (<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                     | JNEX II<br>(tpy) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.  | LEX         STR           (tpy)         (tp)           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                                               | EX         DIUI           0         0.1           1         0.2           1         0.3           1         0.3           1         0.3           0         0.3           1         0.3           0         0.3           0         0.3           0         0.3           0         0.3           0         0.3           0         0.3           0         0.3           0         0.3           0         0.3           0         0.3           0         0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RN         HOTS/<br>AK (tp)           0         0.0           2         0.0           0         0.0           1         0.0           0         0.0           1         0.0           1         0.2           1         0.2           1         0.0           0         0.0           1         0.0           0         0.0           0         0.0           0         0.0           0         0.0                                                 | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.2<br>0.1<br>0.0<br>0.2<br>0.1<br>0.0<br>0.2<br>0.1<br>0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0 | RUNEX<br>(tpy)<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                | 1DLEX<br>(tpy)<br>0.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | (tpy)<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0                                                                                                                                                                                                      | RUNEX I<br>(tpy)<br>0.0<br>0.9<br>0.1<br>0.6<br>0.0<br>0.0<br>0.0<br>0.9<br>0.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                            | DLEX S<br>(tpy) (<br>0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                       | TREX         RUN           (tpy)         (tp)           0.0         0.1           1.5         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.1         0.1           0.2         0.2           0.3         0.2           0.4         0.2           0.0         0.2 | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | (tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.          | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 1DLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX         F           (tpy)         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                     | PMTW         PN           0.0         (tpy)           0.0         (tp)           0.0         (tp) | IBW         RUNI           py)         (tp)           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0                                                     | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.               | (tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.          | PMTW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | PMBW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(mt/yr)<br>145.1<br>415.4<br>34.1<br>289.8<br>31.7<br>10.5<br>17.3<br>214.4<br>15.2                              | IDLEX<br>(mt/yr)<br>54.7<br>0.0<br>0.0<br>0.0<br>0.5<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | STREX<br>(mt/yr)<br>0.0<br>47.8<br>4.0<br>33.5<br>0.5<br>0.1<br>1.8<br>24.8<br>0.1                      | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | IDLEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(mt/yr)<br>0.0<br>0.0                                                        | IDLEX 5<br>(mt/yr) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX         RU           imt/yr)         (m           0.0         (m | //yr)<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0        |
| tpy for CPs<br>mt/yr for GHG<br>Lbs/day x 365 x | HHDT<br>LDA<br>LDT1<br>LHDT2<br>LHDT1<br>LHDT2<br>MCY<br>MDV<br>MH<br>MHDT<br>OBUS | 62442.8<br>963165.9<br>61684.7<br>495299.7<br>56911.8<br>15871.0<br>45323.3<br>306793.9<br>4936.0<br>14756.4<br>762.1 | 129367.6<br>1995465.1<br>127797.0<br>1026150.7<br>117908.7<br>32881.3<br>93899.8<br>635608.5<br>10226.4<br>30572.0<br>1578.9 | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0 | IDLEX 5<br>(tpy) 5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | TREX         E           0.0         0.1           0.0         0.1           0.0         0.1           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0 | HURN         H           0.0         0.0           0.2         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.1         0.1           0.0         0.1           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0 | OTSO RL<br>(tpy) S<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | JNLOS RI<br>(tpy) (<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0                                                                                                                                                                                                                                               | UNEX IE<br>(tpy) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.  | STR         STR           (tpy)         (tp)           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0 | Diul         Diul           0         0.0           1         0.1           0         0.1           1         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1           0         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RN         HOTS/<br>AK (tp)           0         0.0           2         0.0           0         0.0           1         0.0           0         0.0           1         0.0           1         0.0           1         0.0           1         0.0           1         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0           0         0.0 | 0 RUNLOS<br>0 S (tpy)<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.2<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                               | <ul> <li>RUNEX<br/>(tpy)</li> <li>0.2</li> <li>0.0</li> </ul> | 1DLEX<br>(tpy)<br>0.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | STREX         (tpy)           0.1         0.1           0.1         0.0           0.1         0.0           0.0         0.0           0.0         0.1           0.0         0.1           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0 | RUNEX         I           (tpy)         0           0.9         0.1           0.6         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0 | DLEX S<br>(tpy) (<br>0.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                       | RUN         RUN           0.0         0.0           1.5         0.0           0.1         0.0           0.1         0.0           0.1         0.0           0.4         0.0           0.7         0.0           0.0         0.0           0.0         0.0           0.0         0.0                                                                                   | X IDLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.               | STREX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 1DLEX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX         F           (tpy)         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0           0.0         0.0 | PMTW         PM           (tpy)         (t           0.0         (t                                                               | IBW         RUNI           py)         (tp)           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0           1.0         0.0 | X IDLEX<br>0 (tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.             | STREX<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | PMTW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | PMBW<br>(tpy)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(mt/yr)<br>145.1<br>415.4<br>34.1<br>289.8<br>31.7<br>10.5<br>17.3<br>214.4<br>15.2<br>18.6<br>1.3<br>2.8<br>0.0 | IDLEX<br>(mt/yr)<br>54.7<br>0.0<br>0.0<br>0.5<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | STREX<br>(mt/yr)<br>0.0<br>47.8<br>4.0<br>33.5<br>0.5<br>0.1<br>1.8<br>24.8<br>0.1<br>0.1<br>0.1<br>0.0 | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | IDLEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | RUNEX<br>(mt/yr)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | IDLEX 5<br>(mt/yr) (<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | STREX         RU           mt/yr)         (m           0.0         (m                                                    | <i>t/yr)</i> 10 10 10 10 10 10 10 10 10 10 10 10 10                  |

2045 Mobile Emissions

### Conversion of Energy Consumption from NG to Electricity and RV Park Electricity Calculation

#### CalEEMod Defaults

#### Table 8.1 Energy Use by Climate Zone and Land Use Type

| Land Use Sub Type                    | Climate Zone | Historical | T24 Electricity | NT24 Electricity  | Lighting    |             | NT24 Natural |
|--------------------------------------|--------------|------------|-----------------|-------------------|-------------|-------------|--------------|
|                                      | Chinato Zono | Thotoriodi | 121 Elootholty  | TTE T Elocationty | Electricity | Natural Gas | Gas          |
| Automobile Care Center               | 10           | Ν          | 1.97            | 5.02              | 2.93        | 15          | 17           |
| City Park                            | 10           | N          | 0.00            | 0.00              | 0.00        | 0           | 0            |
| Convenience Market (24 hour)         | 10           | N          | 4.09            | 2.44              | 5.61        | 2           | 0            |
| Fast Food Restaurant with Drive Thru | 10           | N          | 11.06           | 28.48             | 6.62        | 78          | 196          |
| Gasoline/Service Station             | 10           | N          | 1.97            | 5.02              | 2.93        | 15          | 17           |
| Mobile Home Park                     | 10           | N          | 164.88          | 4004.74           | 1038.60     | 22827       | 6030         |
| Other Asphalt Surfaces               | 10           | N          | 0.00            | 0.00              | 0.00        | 0           | 0            |
| Parking Lot                          | 10           | N          | 0.00            | 0.00              | 0.35        | 0           | 0            |

#### KBTU to KWhr Calc

|                                      | kWh equivalent fr  | om Natural Gas BTU | _                            |
|--------------------------------------|--------------------|--------------------|------------------------------|
| Land Use Sub Type                    | T24<br>Natural Gas | NT24 Natural Gas   | -                            |
| Automobile Care Center               | 4.5                | 5.0                |                              |
| City Park                            | 0                  | 0                  | 1                            |
| Convenience Market (24 hour)         | 0.6                | 0                  | ]                            |
| Fast Food Restaurant with Drive Thru | 22.9               | 57.4               | ]                            |
| Gasoline/Service Station             | 4.5                | 5.0                | ]                            |
| Mobile Home Park                     | 0.0                | 0.0                | no NG assumed from the start |
| Other Asphalt Surfaces               | 0                  | 0                  | ]                            |
| Parking Lot                          | 0                  | 0                  | ]                            |

## Total Electricity (for adjusted CalEEMod Inputs)

Numbers here are the sum of Electricity in that category + kwh equivalent from NG

|                                      | Title 24 Electricity<br>(KWhr/size/yr) | Non-Title 24 Electricity<br>(KWhr/size/yr) | Lighting<br>Electricity |
|--------------------------------------|----------------------------------------|--------------------------------------------|-------------------------|
| Automobile Care Center               | 6.49                                   | 10.04                                      | 2.93                    |
| City Park                            | 0                                      | 0                                          | 0                       |
| Convenience Market (24 hour)         | 4.66                                   | 2.53                                       | 5.61                    |
| Fast Food Restaurant with Drive Thru | 33.94                                  | 85.86                                      | 6.62                    |
| Gasoline/Service Station             | 6.49                                   | 10.04                                      | 2.93                    |
| Mobile Home Park                     | 0                                      | 7300                                       | 2836.10                 |
| Other Asphalt Surfaces               | 0                                      | 0                                          | 0                       |
| Parking Lot                          | 0                                      | 0                                          | 0.35                    |

Lighting unchanged for all except RV park

## Energy Usage from RV park

RV Energy from plugging in

| kwh per rv per day                                           | 20                                          |      |
|--------------------------------------------------------------|---------------------------------------------|------|
| spaces/rvs                                                   | 88                                          |      |
| kwh/day                                                      | 1760                                        |      |
| days/yr                                                      | 365                                         |      |
| kwh/yr                                                       | 642,400                                     |      |
| Outdoor Lighting                                             |                                             |      |
| Based on kwh per sqft for parking lot, caleemod appx d, tabl | le 8.1                                      |      |
| kwh per SF                                                   | 0.35                                        |      |
| RV area acreage                                              | 16.37                                       |      |
| RV area SF                                                   | 713077.2                                    |      |
| kwh/yr                                                       | 249,577                                     |      |
| total                                                        | 642,400 non-title 24 elec                   |      |
|                                                              | 249,577 lighting elec                       |      |
| per "DU" (88 spaces)                                         | 7300 non-title 24 elec per DU (For caleer   | nod) |
|                                                              | 2836.10 lighting elec per DU (For caleemod) | )    |
|                                                              |                                             |      |

20 kw/day per RV references:

https://www.godownsize.com/electricity-consumption-rv/ https://www.rvingtrends.com/rv-electricity-consumption/

https://www.rvtalk.net/rv-electricity-usage/

## 2022 CARB & CAPCOA Gasoline Service Station Industrywide Risk Assessment Look-up Tool Version 1.0 - February 18, 2022

| Required Value                                   | User Defined Input         | Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|--------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Annual Throughput<br>(gallons/year)              | 14,000,000                 | Enter your gas station's annual throughput in gallons of gasoline dispensed per year.                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Hourly Dispensing Throughput<br>(gallons/hour)   | 4000                       | The tool will calculate the maximum hourly vehicle fueling throughput based on<br>annual throughput as defined by Table 10 of the 2020 Gasoline Service Station<br>Industrywide Risk Assessment Technical Guidance Document (Technical Guidance). If<br>a different value is desired please enter it into cell L4.                                                                                                                                           |  |  |  |  |
| Hourly Loading Throughput<br>(gallons/hour)      | 8800                       | The tool will calculate the maximum hourly loading throughput based on annual throughput as defined by Table 10 of the Technical Guidance. If a different value is desired please enter it into cell L5.                                                                                                                                                                                                                                                     |  |  |  |  |
| Meteorological Data                              | Lancaster                  | Select appropriate meteorological data. Met sets provided include 2 rural (Redding and<br>Lancaster) and 4 urban (Fresno, Ontario, San Diego, and San Jose) locations. Use whichever best<br>correlates to your location. If you would like to use site-specific meteorological data please<br>refer to the Variable Met Tool.                                                                                                                               |  |  |  |  |
| Distance to Nearest Resident<br>(meters)         | 1000                       | Enter the distance to the nearest residential receptor in meters as measured from the edge of the station canopy. Please note that the value must be between 10 and 1000 meters. The distance you input will round down to the nearest receptor distance used in the Technical Guidance (e.g., 19m will return value at 10m distance).                                                                                                                       |  |  |  |  |
| Distance to Nearest Business<br>(meters)         | 1000                       | Enter the distance to the nearest worker receptor in meters as measured from the edge of 1 station canopy. Please note that the value must be between 10 and 1000 meters. The dist you input will round down to the nearest receptor distance used in the Technical Guidance (e.g., 19m will return value at 10m distance).                                                                                                                                  |  |  |  |  |
| Distance to Acute Receptor<br>(meters)           | 1000                       | Enter the distance where acute impacts are expected in meters as measured from the edge of the station canopy. This can be the distance to the property boundary, nearest resident, nearest worker, or any other user defined location. Please note that the value must be between 10 and 1000 meters. The distance you input will round down to the nearest receptor distance used in the Technical Guidance (e.g., 19m will return value at 10m distance). |  |  |  |  |
| Control Scenario                                 | EVR Phase I & EVR Phase II | Select the appropriate control scenario for your gas station. Please refer to technical Guidance<br>for an explanation of the different control scenarios. Almost all gas stations in California are<br>equipped with EVR Phase I and EVR Phase II controls.                                                                                                                                                                                                 |  |  |  |  |
| Include Building Downwash<br>Adjustments         | no                         | Building downwash may over estimate risk results. High results should be investigated further through site-specific health risk assessment.                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Risk Value                                       | Results                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Max Residential Cancer Risk<br>(chances/million) | 0.14                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Max Worker Cancer Risk<br>(chances/million)      | 0.01                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Chronic HI                                       | 0.00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Acute HI                                         | 0.02                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |

# **Construction Energy Calculations**

Construction Fuel Usage Summary (gallons)

|                               |                    | Gasoline |        |         |
|-------------------------------|--------------------|----------|--------|---------|
| Construction Phase            | Off-road Equipment | On-road  | Total  | On-road |
| Demolition                    | 3,844              | 0        | 3,844  | 227     |
| Site Preparation              | 3,872              | 0        | 3,872  | 273     |
| Grading                       | 6,333              | 0        | 6,333  | 303     |
| Building Construction         | 15,264             | 17,299   | 32,563 | 30,377  |
| er Main Trenching / Undergrou | 12,666             | 0        | 12,666 | 606     |
| Paving                        | 2,332              | 0        | 2,332  | 227     |
| Architectural Coating         | 247                | 0        | 247    | 1,016   |
| TOTAL                         | 44,558             | 17,299   | 61,857 | 33,030  |

| Total Gasoline | 33,030 | gallons |
|----------------|--------|---------|
| Total Diesel   | 61,857 | gallons |

# **Operational Energy Calculations**

|                  |                       | Gasoline |                 |                  |
|------------------|-----------------------|----------|-----------------|------------------|
| Vehicle Class    | <b>Diesel Gallons</b> | Gallons  | Electricity Kwh | Natural Gas kbtu |
| Gasoline Vehicle |                       | 17,503   |                 |                  |
| Diesel Vehicle   | 3,188                 |          |                 |                  |
| Electriciy       |                       |          | 1,655,713       |                  |
| Natural Gas      |                       |          |                 | -                |
| Total            | 3,188                 | 17,503   | 1,655,713       | -                |

#### **Operational Fuel Use Summary (gallons, kwh, and kbtu)**

1. Fleet mix calculated from CalEEMod default values.

2. Gallons per mile calculated from EMFAC 2014.

3. Annual VMT obtained from CalEEMod output file.

#### **Operational Energy Usage Summary (MMBTU)**

| Vehicle Class    | Diesel | Gasoline | Electricity | Natural Gas |
|------------------|--------|----------|-------------|-------------|
| Gasoline Vehicle | -      | 2,188    |             |             |
| Diesel Vehicle   | 442    |          |             |             |
| Electriciy       | -      |          | 5,649       |             |
| Natural Gas      | -      |          |             | -           |
| Total            | 442    | 2,188    | 5,649       | -           |

| Gasoline       | 125,000  | BTU per gallon | BTS 2021 |
|----------------|----------|----------------|----------|
| Diesel         | 138,700  | BTU per gallon | BTS 2021 |
| Electricity    | 3,412    | BTU_kWh        | BTS 2021 |
| BTUs per therm | 100000   | standard       |          |
| btu to mmbtu   | 0.000001 | standard       |          |
| kbtu to mmbtu  | 1000     |                |          |

## Construction Offroad Equipment

| Phase Name                            | Offroad Equipment Type    | Amount | Usage | Horse | Load   | Number of | Diesel Fuel |
|---------------------------------------|---------------------------|--------|-------|-------|--------|-----------|-------------|
|                                       |                           |        | Hours | Power | Factor | days      | Usage       |
| Demolition                            | Concrete/Industrial Saws  | 1      | 8     | 81    | 0.73   | 22        | 520         |
| Demolition                            | Excavators                | 3      | 8     | 158   | 0.38   | 22        | 1,585       |
| Demolition                            | Rubber Tired Dozers       | 2      | 8.00  | 247   | 0.40   | 22        | 1,739       |
| Site Preparation                      | Rubber Tired Dozers       | 3      | 8.00  | 247   | 0.40   | 22        | 2,608       |
| Site Preparation                      | Tractors/Loaders/Backhoes | 4      | 8.00  | 97    | 0.37   | 22        | 1,263       |
| Grading                               | Excavators                | 2      | 8.00  | 158   | 0.38   | 22        | 1,057       |
| Grading                               | Graders                   | 1      | 8.00  | 187   | 0.41   | 22        | 675         |
| Grading                               | Rubber Tired Dozers       | 1      | 8.00  | 247   | 0.40   | 22        | 869         |
| Grading                               | Scrapers                  | 2      | 8.00  | 367   | 0.48   | 22        | 3,100       |
| Grading                               | Tractors/Loaders/Backhoes | 2      | 8.00  | 97    | 0.37   | 22        | 632         |
| Building Construction                 | Cranes                    | 1      | 7.00  | 231   | 0.29   | 132       | 3,095       |
| Building Construction                 | Forklifts                 | 3      | 8.00  | 89    | 0.20   | 132       | 2,820       |
| Building Construction                 | Generator Sets            | 1      | 8.00  | 84    | 0.74   | 132       | 3,282       |
| Building Construction                 | Tractors/Loaders/Backhoes | 3      | 7.00  | 97    | 0.37   | 132       | 4,974       |
| Building Construction                 | Welders                   | 1      | 8.00  | 46    | 0.45   | 132       | 1,093       |
| Water Main Trenching / Undergrounding | Excavators                | 2      | 8.00  | 158   | 0.38   | 44        | 2,113       |
| Water Main Trenching / Undergrounding | Graders                   | 1      | 8.00  | 187   | 0.41   | 44        | 1,349       |
| Water Main Trenching / Undergrounding | Rubber Tired Dozers       | 1      | 8.00  | 247   | 0.40   | 44        | 1,739       |
| Water Main Trenching / Undergrounding | Scrapers                  | 2      | 8.00  | 367   | 0.48   | 44        | 6,201       |
| Water Main Trenching / Undergrounding | Tractors/Loaders/Backhoes | 2      | 8.00  | 97    | 0.37   | 44        | 1,263       |
|                                       |                           |        |       |       |        |           |             |
| Paving                                | Pavers                    | 2      | 8.00  | 130   | 0.42   | 22        | 961         |
| Paving                                | Paving Equipment          | 2      | 8.00  | 132   | 0.36   | 22        | 836         |
| Paving                                | Rollers                   | 2      | 8.00  | 80    | 0.38   | 22        | 535         |
| Architectural Coating                 | Air Compressors           | 1      | 6.00  | 78    | 0.48   | 22        | 247         |
|                                       |                           |        |       |       |        | τοται     | 44 559      |

TOTAL 44,558 =offroad diesel A4,558 =offroad diesel Notes: Equipment assumptions are consistent with CalEEMod. Fuel usage average of 0.05 gallons of diesel fuel per horsepower-hour is from the SCAQMD CEQA Air Quality Handbook, Table A9-3E.

### Trips and VMT

| Phase Name                            | Daily Worker Trip | Daily  | Daily   | Days in | Total  | Total  | Total Haul | Worker Trip | Vendor Trip | Haul Trip | Total       | Total       | Total Haul Trip | Total      | Total      |
|---------------------------------------|-------------------|--------|---------|---------|--------|--------|------------|-------------|-------------|-----------|-------------|-------------|-----------------|------------|------------|
|                                       |                   | Vendor | Hauling | Phase   | Worker | Vendor | Trips      | Length      | Length      | Length    | Worker Trip | Vendor Trip | Length (miles)  | gallons of | gallons of |
|                                       |                   | Trip   | Trip    |         | Trips  | Trips  |            | (miles)     | (miles)     | (miles)   | Length      | Length      |                 | gasoline   | diesel     |
|                                       |                   |        |         |         |        |        |            |             |             |           | (miles)     | (miles)     |                 |            |            |
| Demolition                            | 15                | 0      | 0       | 22      | 330    | 0      | 0          | 16.80       | 6.60        | 20.00     | 5544        | 0           | -               | 227        | 0          |
| Site Preparation                      | 18                | 0      | 0       | 22      | 396    | 0      | 0          | 16.80       | 6.60        | 20.00     | 6652.8      | 0           | -               | 273        | 0          |
| Grading                               | 20                | 0      | 0       | 22      | 440    | 0      | 0          | 16.80       | 6.60        | 20.00     | 7392        | 0           | -               | 303        | 0          |
| Building Construction                 | 334               | 116    | 0       | 132     | 44,088 | 15,312 | 0          | 16.80       | 6.60        | 20.00     | 740678.4    | 101059.2    | -               | 30,377     | 17,299     |
| Water Main Trenching / Undergrounding | 20                | 0      | 0       | 44      | 880    | 0      | 0          | 16.80       | 6.60        | 20.00     | 14784       | 0           | -               | 606        | 0          |
| Paving                                | 15                | 0      | 0       | 22      | 330    | 0      | 0          | 16.80       | 6.60        | 20.00     | 5544        | 0           | -               | 227        | 0          |
| Architectural Coating                 | 67                | 0      | 0       | 22      | 1,474  | 0      | 0          | 16.80       | 6.60        | 20.00     | 24763.2     | 0           | -               | 1,016      | 0          |
|                                       |                   |        |         |         |        |        |            |             |             |           |             |             | TOTAL           | 33,030     | 17,299     |

# **Operational Transporation Energy Calc** EMFAC2014 (v1.0.7) Emissions Inventory

EMFAC2014 (v1.0.7) Emissions Inventory Region Type: Air Basin Region: Mojave Desert Calendar Year: 2024 Season: Annual Vehicle Classification: EMFAC2007 Categories

Units: miles/day for VMT, trips/day for Trips, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

| Region        | CalYr | VehClass   | MdlYr     | Speed Fuel      | Population | VMT (mi/day) <mark>% (</mark> | of vehicle class EI % ( | CalEEMod vehicle% | project vehicle claVN | /IT by project vehicle class (m Gall | lons of fuel | Fuel_Consumption (1000 gal/day) | Fuel (gal/day) | mi/gal      | Class     |
|---------------|-------|------------|-----------|-----------------|------------|-------------------------------|-------------------------|-------------------|-----------------------|--------------------------------------|--------------|---------------------------------|----------------|-------------|-----------|
| Mojave Desert |       | 2024 HHDT  | Aggregate | ed Aggreg: GAS  | 66.26869   | 12286.44426                   | 0.002747829             | 0.017285          | 4.74962E-05           | 199.8255005                          | 38.26087012  | 2.352502793                     | 2352.502793    | 5.222711871 | Truck     |
| Mojave Desert |       | 2024 HHDT  | Aggregate | ed Aggreg: DSL  | 21214.09   | 4459041.306                   | 0.997252171             | 0.017285          | 0.017237504           | 72521.40179                          | 10568.92626  | 649.8396003                     | 649839.6003    | 6.861756815 | Truck     |
| Mojave Desert |       | 2024 LDA   | Aggregate | ed Aggreg: GAS  | 592213.9   | 22692621.71                   | 0.920179023             | 0.537785          | 0.494858476           | 2081962.146                          | 63153.65347  | 688.3515971                     | 688351.5971    | 32.96661446 | Passenger |
| Mojave Desert |       | 2024 LDA   | Aggregate | ed Aggreg: DSL  | 6885.635   | 273325.8077                   | 0.01108328              | 0.537785          | 0.005960422           | 25076.60826                          | 580.2029252  | 6.323998506                     | 6323.998506    | 43.22040991 | Passenger |
| Mojave Desert |       | 2024 LDA   | Aggregate | ed Aggreg: ELEC | 34044.54   | 1695146.849                   | 0.068737698             | 0.537785          | 0.036966103           | 155523.3069                          | #DIV/0!      | 0                               | 0              | #DIV/0!     | Passenger |
| Mojave Desert |       | 2024 LDT1  | Aggregate | ed Aggreg: GAS  | 44252.84   | 1519888.45                    | 0.998671461             | 0.055838          | 0.055763817           | 234608.806                           | 8433.690247  | 54.63677434                     | 54636.77434    | 27.8180487  | Truck     |
| Mojave Desert |       | 2024 LDT1  | Aggregate | ed Aggreg: DSL  | 59.87612   | 1309.126237                   | 0.000860186             | 0.055838          | 4.80311E-05           | 202.0757139                          | 6.598687106  | 0.0427489                       | 42.74889969    | 30.62362415 | Truck     |
| Mojave Desert |       | 2024 LDT1  | Aggregate | ed Aggreg: ELEC | 20.86969   | 712.7916298                   | 0.000468353             | 0.055838          | 2.61519E-05           | 110.0259649                          | #DIV/0!      | 0                               | 0              | #DIV/0!     | Truck     |
| Mojave Desert |       | 2024 LDT2  | Aggregate | ed Aggreg: GAS  | 201601.8   | 7708313.572                   | 0.997973819             | 0.172353          | 0.172003782           | 723652.0739                          | 28729.19958  | 306.0223097                     | 306022.3097    | 25.18873078 | Truck     |
| Mojave Desert |       | 2024 LDT2  | Aggregate | ed Aggreg: DSL  | 382.2774   | 15650.14937                   | 0.002026181             | 0.172353          | 0.000349218           | 1469.227081                          | 43.4882981   | 0.463235649                     | 463.2356495    | 33.78442351 | Truck     |
| Mojave Desert |       | 2024 LHDT1 | Aggregate | ed Aggreg: GAS  | 10641.29   | 280840.0185                   | 0.409425525             | 0.027005          | 0.011056536           | 46516.91585                          | 4396.396127  | 26.54268769                     | 26542.68769    | 10.58069257 | Truck     |
| Mojave Desert |       | 2024 LHDT1 | Aggregate | ed Aggreg: DSL  | 13660.17   | 405096.7418                   | 0.590574475             | 0.027005          | 0.015948464           | 67098.16909                          | 3369.122725  | 20.34065396                     | 20340.65396    | 19.91562035 | Truck     |
| Mojave Desert |       | 2024 LHDT2 | Aggregate | ed Aggreg: GAS  | 1748.792   | 60658.26917                   | 0.274605417             | 0.007196          | 0.001976061           | 8313.6564                            | 810.2743642  | 5.91194032                      | 5911.94032     | 10.26029795 | Truck     |
| Mojave Desert |       | 2024 LHDT2 | Aggregate | ed Aggreg: DSL  | 4642.614   | 160234.2017                   | 0.725394583             | 0.007196          | 0.005219939           | 21961.26125                          | 1170.470399  | 8.540009966                     | 8540.009966    | 18.76276518 | Truck     |
| Mojave Desert |       | 2024 MCY   | Aggregate | ed Aggreg: GAS  | 32348.72   | 356687.4187                   | 1                       | 0.025303          | 0.025303              | 106454.4527                          | 2757.680528  | 9.239913638                     | 9239.913638    | 38.60289529 | Passenger |
| Mojave Desert |       | 2024 MDV   | Aggregate | ed Aggreg: GAS  | 135759.1   | 4437776.562                   | 0.97873604              | 0.139003          | 0.136047246           | 572376.2035                          | 31761.0488   | 246.2513939                     | 246251.3939    | 18.02132565 | Truck     |
| Mojave Desert |       | 2024 MDV   | Aggregate | ed Aggreg: DSL  | 2525.367   | 96414.8674                    | 0.02126396              | 0.139003          | 0.002955754           | 12435.41106                          | 485.9336972  | 3.767566085                     | 3767.566085    | 25.5907568  | Truck     |
| Mojave Desert |       | 2024 MH    | Aggregate | ed Aggreg: GAS  | 4304.639   | 32209.98259                   | 0.777850648             | 0.005071          | 0.003944481           | 16595.16766                          | 2070.851667  | 4.01936862                      | 4019.36862     | 8.013692107 | Other     |
| Mojave Desert |       | 2024 MH    | Aggregate | ed Aggreg DSL   | 1193.815   | 9198.972546                   | 0.222149352             | 0.005071          | 0.001126519           | 4739.477621                          | 449.2194973  | 0.871901537                     | 871.9015371    | 10.55047176 | Other     |
| Mojave Desert |       | 2024 MHDT  | Aggregate | ed Aggreg GAS   | 1276.666   | 95403.48595                   | 0.20311145              | 0.011392          | 0.002313846           | 9734.781288                          | 1205.123253  | 11.81053338                     | 11810.53338    | 8.07783043  | Truck     |
| Mojave Desert |       | 2024 MHDT  | Aggregate | ed Aggreg: DSL  | 7115.801   | 374306.5475                   | 0.79688855              | 0.011392          | 0.009078154           | 38193.49302                          | 4130.687136  | 40.48184962                     | 40481.84962    | 9.246280766 | Truck     |
| Mojave Desert |       | 2024 OBUS  | Aggregate | ed Aggreg GAS   | 687.841    | 51071.86263                   | 0.702470766             | 0.000559          | 0.000392681           | 1652.083065                          | 202.6210588  | 6.263749748                     | 6263.749748    | 8.153560517 | Other     |
| Mojave Desert |       | 2024 OBUS  | Aggregate | ed Aggreg DSL   | 259.8527   | 21631.32314                   | 0.297529234             | 0.000559          | 0.000166319           | 699.7344681                          | 92.93202477  | 2.872864993                     | 2872.864993    | 7.529529997 | Other     |
| Mojave Desert |       | 2024 SBUS  | Aggregate | ed Aggreg GAS   | 189.1327   | 11998.70085                   | 0.309903886             | 0.000954          | 0.000295648           | 1243.847717                          | 102.8240147  | 0.991885563                     | 991.8855634    | 12.09686006 | Other     |
| Mojave Desert |       | 2024 SBUS  | Aggregate | ed Aggreg: DSL  | 710.6313   | 26718.78989                   | 0.690096114             | 0.000954          | 0.000658352           | 2769.808681                          | 380.7213855  | 3.672605539                     | 3672.605539    | 7.275159176 | Other     |
| Mojave Desert |       | 2024 UBUS  | Aggregate | ed Aggreg GAS   | 202.0422   | 39351.87648                   | 0.459630839             | 0.000254          | 0.000116746           | 491.1732343                          | 95.65025333  | 7.663318543                     | 7663.318543    | 5.135096011 | Other     |
| Mojave Desert |       | 2024 UBUS  | Aggregate | ed Aggreg DSL   | 253.8133   | 46264.39017                   | 0.540369161             | 0.000254          | 0.000137254           | 577.4522637                          | 114.3815657  | 9.164036092                     | 9164.036092    | 5.048473151 | Other     |
|               |       |            |           |                 |            | 44,884,160                    |                         |                   |                       | 4,207,179                            |              | 2,116                           | 2116439.046    | 21.20739565 |           |

Project VMT (mi/yr) Project Mobile Emissions (M1

**4,207,187** 2,391

|           | Gas (gal) | Diesel (gal) |
|-----------|-----------|--------------|
| Passenger | 65,911    | 580          |
| Truck     | 75,374    | 19,775       |
| Other     | 2,472     | 1,037        |
|           |           |              |
| Total     | 143,757   | 21,393       |

| 143,757 |
|---------|
| 21,393  |
|         |

| Туре                                | Measure #                                                                                                                           | Measure Description                                                                                                                                                                                                                                          | Loves Apple Valley Project Consistency |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|
| Town Municipal Operational Measures | M0-1                                                                                                                                | Encourage the development of residential projects at a density of at least 15 units per acre in the Medium Density Residential zone along Bear<br>Valley Road, Highway 18, Dale Evans Parkway, Apple Valley Road, Navajo Road, Central Road, and Kiowa Road. | NA - not a residential project         |  |  |  |  |
| Town Municipal Operational Measures | MO-2                                                                                                                                | Encourage the development of mixed-use projects in the Mixed Use zone along Bear Valley Road, Highway 18, Dale Evans Parkway, Apple Valley Road, Navajo Road, Central Road, and Kiowa Road.                                                                  | NA - not in a mixed use zone           |  |  |  |  |
| Town Municipal Operational Measures | MO-3                                                                                                                                | Encourage the development of residential projects at a density of at least 15 units per acre in the Medium Density Residential zone along the High Desert Corridor.                                                                                          | NA - not a residential project         |  |  |  |  |
| Town Municipal Operational Measures | MO-4                                                                                                                                | Encourage the development of mixed-use projects in the Mixed Use zone along the High Desert Corridor.                                                                                                                                                        | NA - not in a mixed use zone           |  |  |  |  |
| Town Municipal Operational Measures | MO-5                                                                                                                                | Encourage the development of new infill or reconstruction projects along Bear Valley Road, near its intersections with Apple Valley Road, Kiowa Road and Navajo Road; or along Highway 18.                                                                   | NA - not in these areas                |  |  |  |  |
| Town Municipal Operational Measures | MO-6                                                                                                                                | Plant a minimum of 25 trees annually in Town parks, and on other Town properties.                                                                                                                                                                            | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-7                                                                                                                                | Partner with the Apple Valley Unified School District to establish an "adopt a tree" education and maintenance program whereby school classes adopt and maintain specific trees in Town parks and other Town properties.                                     | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | Install advanced technology systems and implement effective management strategies in order to improve the operational efficiency of |                                                                                                                                                                                                                                                              |                                        |  |  |  |  |
| Town Municipal Operational Measures | MO-9                                                                                                                                | Expand bikeways, walking paths and trails connecting residential neighborhoods to commercial projects, schools and other institutions, and transit.                                                                                                          | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-10                                                                                                                               | Prioritize roadway improvements for areas experiencing Level of Service D or worse.                                                                                                                                                                          | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-11                                                                                                                               | Replace gasoline or diesel fleet vehicles with hybrid or alternative fuel vehicles when they are scheduled for replacement, if available for the use intended.                                                                                               | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-12                                                                                                                               | A minimum of 50% of the Town's additional new vehicle purchases (not replacement vehicles) shall be hybrid or alternative fuel vehicles (if available for the use intended).                                                                                 | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-13                                                                                                                               | Encourage Victor Valley Transit Authority to install bicycle racks on all buses, and to operate an all-alternative fuel fleet.                                                                                                                               | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-14                                                                                                                               | Encourage Apple Valley Unified School District to replace traditional fueled school buses with CNG fueled school buses upon new bus purchases.                                                                                                               | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-15                                                                                                                               | Encourage CalTrans to install carpool lanes on the High Desert Corridor.                                                                                                                                                                                     | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-16                                                                                                                               | Specify rubberized and/or recycled asphalt in Town-initiated road pavement projects to the extent economically viable.                                                                                                                                       | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-17                                                                                                                               | When feasible, Town staff is encouraged to carpool when traveling out of Town for official functions, meetings, and events.                                                                                                                                  | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-18                                                                                                                               | Provide employees with free public transit passes.                                                                                                                                                                                                           | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-19                                                                                                                               | Provide secure bicycle racks at all Town facilities.                                                                                                                                                                                                         | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-20                                                                                                                               | Reduce energy use at all Town facilities by 15% by 2030.                                                                                                                                                                                                     | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-21                                                                                                                               | Replace all failing or failed fixtures and appliances in Town facilities with energy efficient fixtures and appliances. Light bulbs shall be replaced with CFL or LED bulbs. Appliances shall be Energy Star rated.                                          | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-22                                                                                                                               | Encourage Liberty Utilities Apple Valley, Golden State, and other water purveyors to replace water systems with energy efficient motors, pumps and other equipment.                                                                                          | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-23                                                                                                                               | Encourage VVWRA to replace wastewater systems with energy efficient motors, pumps and other equipment.                                                                                                                                                       | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-24                                                                                                                               | Encourage the County of San Bernardino to capture and utilize landfill gas for use as an energy source including fuel for vehicles, operating equipment, and heating buildings                                                                               | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-25                                                                                                                               | Consider the installation of green roofs on Town facilities.                                                                                                                                                                                                 | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-26                                                                                                                               | Consider the installation of cool roofs on Town facilities.                                                                                                                                                                                                  | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-27                                                                                                                               | Reduce turf areas at Town facilities by 20% overall.                                                                                                                                                                                                         | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-28                                                                                                                               | Modernize facilities and equipment at the golf course when financially feasible, including the well pumps.                                                                                                                                                   | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-29                                                                                                                               | Install semi-pervious surfaces which allow water to percolate at Town facilities to the extent economically feasible.                                                                                                                                        | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-30                                                                                                                               | Install timers for all ball field lighting on Town facilities.                                                                                                                                                                                               | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-31                                                                                                                               | Consider a home weatherization and energy efficient appliance replacement grant program for existing residents including extremely low, very low and low-income households                                                                                   | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-32                                                                                                                               | Continue to require that improvements made under the Residential Rehabilitation Loan Program be energy efficient.                                                                                                                                            | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-33                                                                                                                               | Promote third-party energy efficiency programs, including the Energy Upgrade California program.                                                                                                                                                             | NA - Town-lead measure                 |  |  |  |  |
| Town Municipal Operational Measures | MO-34                                                                                                                               | Consider an Energy Savings Performance Contract with a private entity to retrofit public buildings, which will allow the private entity to fund all energy improvements in exchange for a share of the energy savings over a period of time.                 | NA - Town-lead measure                 |  |  |  |  |

| Туре                                | Measure # | Measure Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Loves Apple Valley Project Consistency                                                  |
|-------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Town Municipal Operational Measures | MO-35     | Consider partnership with Southern California Edison in establishing a rebate/incentive/refund program for the installation of Energy Star<br>appliances or alternative energy systems on private projects, including single family homes.                                                                                                                                                                                                                                                                                                                                                                             | NA - Town-lead measure                                                                  |
| Town Municipal Operational Measures | MO-36     | Install photovoltaic systems on the buildings and carports located at the Public Works facility and Town Hall/Police Department, which will<br>provide electricity for the Civic Center and the Public Works/Animal Control facilities. And consider installing wind energy resources on properties<br>greater than 2 acres.                                                                                                                                                                                                                                                                                           | NA - Town-lead measure                                                                  |
| Town Municipal Operational Measures | MO-37     | Consider installing a CNG fueling station and establish a public access program for same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA - Town-lead measure                                                                  |
| Town Municipal Operational Measures | MO-38     | Consider replacing failing or failed traditional water heaters in Town facilities with solar water heaters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA - Town-lead measure                                                                  |
| Town Municipal Operational Measures | MO-39     | When it fails, consider replacing the municipal pool heater with a solar pool heating system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA - Town-lead measure                                                                  |
| Town Municipal Operational Measures | MO-40     | Require composting of all landscaping waste from Town facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA - Town-lead measure                                                                  |
| Town Municipal Operational Measures | MO-41     | Encourage two-sided printing and electronic document submittals to reduce paper waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA - Town-lead measure                                                                  |
| Town Municipal Operational Measures | MO-42     | Provide recycling bins for all offices, and at all employee gathering points (lunch room, conference rooms, etc.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA - Town-lead measure                                                                  |
| Town Municipal Operational Measures | MO-43     | Reuse and replace transport packaging including the reuse of cardboard boxes, and the recycling of plastic film, cardboard, and paper. Utilize<br>reusable plastic transport packaging in place of limited-use wood pallets or cardboard boxes. For every 1-ton of corrugated cardboard boxes that<br>is kept from entering the landfill, about 3.87 tons of CO2e are avoided.<br>• For every ton of plastic film (in the form of Low Density Polyethylene LDPE) that is recycled, about 1.9 tons of CO2e are avoided annually.<br>• For every ton of mixed general paper recycled about 4.3 tons of CO2e are avoided. | NA - Town-lead measure                                                                  |
| Community Operational Measures      | CO-1      | Encourage replacement of personal vehicles with hybrid or alternative fuel vehicle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Applicable - Project would include EV charger(s)                                        |
| Community Operational Measures      | CO-2      | Establish and enforce idling time limits for delivery vehicles. Idling shall not be permitted for more than 5 minutes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA, deliveries very rate (meant more for busy commercial areas)                         |
| Community Operational Measures      | CO-3      | Encourage the replacement of gasoline or diesel fleet vehicles with hybrid or alternative fuel vehicles, if available for intended use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Applicable - Project would include EV charger(s)                                        |
| Community Operational Measures      | CO-4      | Establish an employee carpooling program, including incentives (preferred parking, flex time incentives, etc.) for participating employees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA not a job center                                                                     |
| Community Operational Measures      | CO-5      | (Encourage) Provide employees with free or discounted public transit passes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA tranit not very accesible given the rural project location                           |
| Community Operational Measures      | CO-6      | Replace failing or failed fixtures and appliances with energy efficient fixtures and appliances. Light bulbs shall be replaced with CFL or LED bulbs.<br>Appliances shall be Energy Star rated                                                                                                                                                                                                                                                                                                                                                                                                                         | NA meant more for existing uses                                                         |
| Community Operational Measures      | CO-7      | Replace traditional water heater with an instant water heating system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA meant more for existing uses                                                         |
| Community Operational Measures      | CO-8      | Replace traditional roofing with a cool roof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA meant more for existing uses                                                         |
| Community Operational Measures      | CO-9      | Increase insulation in walls and roof to a minimum R-30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Applicable but part of Title 24                                                         |
| Community Operational Measures      | CO-10     | Install weather-stripping on all doors and windows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Applicable but part of Title 24                                                         |
| Community Operational Measures      | CO-11     | Replace grass/turf areas with drought tolerant or native plants, or with decorative rock or gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA there are is no existing vegetation to replace                                       |
| Community Operational Measures      | CO-12     | Replace water fixtures (faucets, toilets, etc.) with high efficiency fixtures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Applicable but part of Title 24                                                         |
| Community Operational Measures      | CO-13     | Replace water heater and/or pool heater with a solar water heating system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Applicable but part of Title 24 - plus no existing water heater to replace              |
| Community Operational Measures      | CO-14     | Install solar panels or photovoltaic system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Using AVCE                                                                              |
| Community Operational Measures      | CO-15     | For apartment or condominium projects, install solar or photovoltaic systems on carport roofs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA not a residential project                                                            |
| Community Operational Measures      | CO-16     | Install a home composting system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA measure meant more for residential project                                           |
| Community Operational Measures      | CO-17     | Increase recycling by 20%. Currently, recycling is mandatory for businesses that generate four cubic yards or more of commercial solid waste per week and for multifamily residential dwellings of five units or more (Senate Bill 1018).                                                                                                                                                                                                                                                                                                                                                                              | Applicable. Mitigation 3.7-1 requires recycling, plus SB 1018 compliance is<br>required |
| Community Operational Measures      | CO-18     | For businesses, encourage two-sided printing and electronic document submittals to reduce paper waste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA, not a project with uses that print much                                             |
| New Development Measures            | ND-1      | Develop a residential project at a density of at least 15 units per acre in the Medium Density Residential zone along Bear Valley Road, Highway<br>18, Dale Evans Parkway, Apple Valley Road, Navajo Road, Central Road, and Kiowa Road.                                                                                                                                                                                                                                                                                                                                                                               | NA not residential                                                                      |
| New Development Measures            | ND-2      | Develop a mixed-use project in the Mixed-Use zone along Bear Valley Road, Highway 18, Dale Evans Parkway, Apple Valley Road, Navajo Road,<br>Central Road, and Kiowa Road                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA - not in a mixed use zone                                                            |
| New Development Measures            | ND-3      | Develop a residential project at a density of at least 15 units per acre in the Medium Density Residential zone along the High Desert Corridor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA - a residential project                                                              |
| New Development Measures            | ND-4      | Develop a mixed-use project in the Mixed-Use zone along the High Desert Corridor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA - not in a mixed use zone                                                            |
| New Development Measures            | ND-5      | Develop a new infill or redevelopment project along Bear Valley Road, near its intersections with Apple Valley Road, Kiowa Road and Navajo<br>Road; or along Highway 18.                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA - not in a mixed use zone                                                            |
| New Development Measures            | ND-6      | For projects within the North Apple Valley Industrial Specific Plan, develop employee housing within one mile of the industrial project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                      |

| Туре                     | Measure #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measure Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Loves Apple Valley Project Consistency                                                      |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| New Development Measures | ND-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Preserve trees occurring on-site either through in situ protection during and after construction, or through transplant and relocation within<br>landscaped areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA site is disturbed with little vegetation                                                 |
| New Development Measures | ND-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Utilize the Collaborative for High Performance Schools (CHPS) best practices for school design, building, and operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Applicable but part of Title 24                                                             |
| New Development Measures | ND-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | During project construction, encourage on-site and off-road construction equipment to utilize biodiesel fuel (a minimum of B20), except for<br>equipment where use of biodiesel fuel would void the equipment warranty. As a conservative measure, no reduction in GHG emissions was<br>taken for the implementation of this measure as it is unknown if biodiesel can be readily applied to the various pieces of construction equipment<br>that will be necessary for the project.                                                                                                                                                                                                                                                                                                                                                                                                                         | Applicable                                                                                  |
| New Development Measures | ND-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Install bus stop(s) and secure scheduled transit service from Victor Valley Transit Authority.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
| New Development Measures | ND-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Install pedestrian, bicycle and/or equestrian trails connecting project to school(s), commercial project(s) or transit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Applicable, and mitigation adds a Class II bike lane                                        |
| New Development Measures | "eyebrow" shades and shade trees shall be considered. • Interior and exterior energy efficient lighting which exceeds the California Title 24<br>Energy Efficiency performance standards shall be installed, as deemed acceptable by Town. Automatic devices to turn off lights when they are<br>not needed shall be implemented. • To the extent that they are compatible with landscaping guidelines established by the Town, shade<br>producing trees, particularly those that shade paved surfaces such as streets and parking lots and buildings shall be planted at the Project shall emphasize light and off-white colors which will reflect heat away from the buildings. • All<br>buildings shall be designed to accommodate renewable energy sources, such as photovoltaic solar electricity systems, and wind energy systems<br>on properties greater than 2 acres, appropriate to their architectural design. • Consideration shall be given to using LED lighting for all outdoor<br>uses (i.e. buildings, pathways, landscaping, carports). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Applicable but part of Title 24                                                             |
| New Development Measures | ND-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | For residential projects, implement Green Building practices and document GHG reduction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA not residential                                                                          |
| New Development Measures | ND-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Use passive solar design by orienting buildings and incorporating landscaping to maximize passive solar heating during the winter, and minimize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Applicable but part of Title 24, plus mitigation requires solar or use of the<br>Town's CCA |
| New Development Measures | ND-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | solar heating during the summer<br>To reduce energy demand associated with potable water conveyance:<br>• Landscaping palette emphasizing drought tolerant plants and exceeding Town standards for water conservation.<br>• For residential uses, limit turf areas to no more than 25% of all landscaped areas.<br>• Encourage limiting turf areas to no more than 20% for added water/energy savings.<br>• Turf is prohibited in public rights-of-way, including parkways, and in non-residential uses with the exception of Special Landscaping Areas.<br>(Town Municipal Code Chapter 9.75 Water Conservation/Landscaping).<br>• Use of water-efficient irrigation techniques exceeding Town standards for water conservation.<br>• U.S. EPA Certified WaterSense labeled or equivalent faucets, high-efficiency toilets (HETs), and water-conserving shower heads.<br>• Consider use of artificial turf. | Applicable but part of Title 24                                                             |
| New Development Measures | ND-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Install Energy Star appliances and energy efficient fixtures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Applicable but part of Title 24                                                             |
| New Development Measures | ND-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Install all CFL or LED light bulbs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Applicable but already part of project design                                               |
| New Development Measures | ND-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Install common area electric vehicle charging station(s) and secure bicycle racks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Applicable but already part of project design                                               |
| New Development Measures | ND-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | To reduce the project's energy use from the grid: • Install solar panels/photovoltaic systems sufficient to provide electric power and heat water within the project, and/or • Install other clean energy system sufficient to provide electric power and heat water within the project, and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Applicable but part of Title 24, plus mitigation requires solar or use of the<br>Town's CCA |
| New Development Measures | ND-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Install solar or photovoltaic systems on new roofs whether on residential, commercial or industrial buildings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Applicable but part of Title 24, plus mitigation requires solar or use of the<br>Town's CCA |
| New Development Measures | ND-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Use on-site generated bio-gas in appropriate applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                          |
| New Development Measures | ND-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Install combined heat and power facilities in appropriate applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                          |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |

| Туре                     | Measure # | Measure Description                                                                                                                                                                                                                                                              | Loves Apple Valley Project Consistency |
|--------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| New Development Measures | ND-24     | Recycle and/or salvage non-hazardous construction and demolition waste, and develop and implement a construction waste management plan<br>quantifying the reduction in the waste stream.                                                                                         | no real demo activities                |
| New Development Measures | ND-25     | Reuse construction waste in project features (e.g. shattered concrete or asphalt can be ground and used in walkways and parking lots).                                                                                                                                           | no real demo activities                |
| New Development Measures | ND-26     | Facilitate the reduction of waste generated by building occupants that is hauled to and disposed of in landfills by providing easily accessible areas that serve each building and are dedicated to the collection and storage of paper, cardboard, glass, plastics, and metals. | Applicable                             |
| New Development Measures | ND-27     | Provide educational information to residents addressing energy efficiency, solid waste reduction, and water conservation measures.                                                                                                                                               | ΝΑ                                     |

11/15/22, 1:13 PM



Caution: Photovoltaic system perform predictions calculated by  $\mathsf{PVWatts}^{(\!R\!)}$  in include inherent assumptions . many and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PVWatts<sup>®</sup> inputs. For example, PV modules with better performance are not differentiated within  $\mathsf{PVWatts}^{(\!\!R\!)}$  from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at https://sam.nrel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

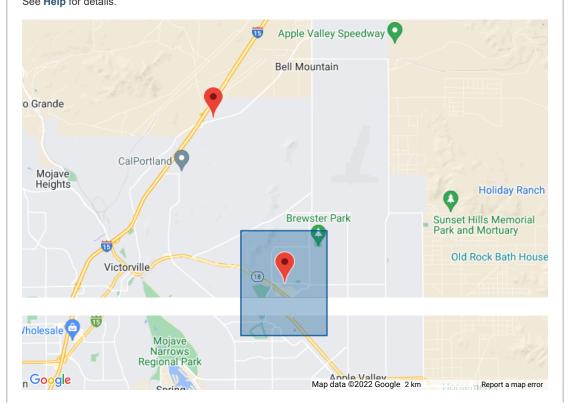
Disclaimer: The PVWatts<sup>®</sup> Model ("Model") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

YOU AGREE то INDEMNIEY DOE/INEL/ALLIANCE, AND ITS AFFILIATES, OFFICERS, AGENTS, AND EMPLOYEES AGAINST ANY CLAIM OR DEMAND, INCLUDING REASONABLE ATTORNEYS' FEES, RELATED TO YOUR USE, RELIANCE, OR ADOPTION OF THE MODEL FOR ANY PURPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/NREL/ALLIANCE 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT SHALL DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER. INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM ANY ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

# **SOLAR RESOURCE DATA**


The latitude and longitude of the solar resource data site is shown below, along with the distance between your location and the center of the site grid cell. Use this data unless you have a reason to change it.



## **Resource Data Map**

The blue rectangle on the map indicates the NREL National Solar Radiation Database (NSRDB) grid cell for your location. If you want to use data for a different NSRDB grid cell, double-click the map to move the rectangle. Dragging the rectangle will not move it.

If your location is outside the NSRDB area, the map shows pins for the nearest alternate data sites instead of a rectangle: Click a pin to choose the site you want to use. See **Help** for details.



🖾NREL

Caution: Photovoltaic system performance predictions calculated by  $\mathsf{PVWatts}^{(\!R\!)}$  include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific

characteristics except as represented by  $\mathsf{PVWatts}^{(\!R\!)}$  inputs. For example,  $\mathsf{PV}$  modules with better performance are not differentiated within  $\mathsf{PVWatts}^{(\!\!R\!)}$  from lesser

performing modules. Both NREL and private companies provide more sophisticated PV

modeling tools (such as the System Advisor Model at https://sam.nrel.gov) that allow for more precise and complex modeling of PV

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report:

Disclaimer: The  $\mathsf{PVWatts}^{\textcircled{R}}$  Model ("Model") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or

то

DOE/INEL/ALLIANCE, AND ITS AFFILIATES, OFFICERS, AGENTS, AND EMPLOYEES AGAINST ANY CLAIM OR DEMAND,

INDEMNIEY

new versions of the Model.

AGREE

systems.

The Error Report.

YOU

AGAINST ANT CLAIM OR DEMAND, INCLUDING REASONABLE ATTORNEYS' FEES, RELATED TO YOUR USE, RELIANCE, OR ADOPTION OF THE MODEL FOR ANY PURPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/NREL/ALLIANCE 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT SHALL DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER.

INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM ANY ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.

# SYSTEM INFO

Modify the inputs below to run the simulation.

| DC System Size (kW): | 80                |                    |
|----------------------|-------------------|--------------------|
| Module Type:         | Standard          |                    |
| Array Type:          | Fixed (open rack) |                    |
| System Losses (%):   | 14.08             | Loss<br>Calculator |
| Tilt (deg):          | 20                |                    |
| Azimuth (deg):       | 180               |                    |

#### **PVWatts Calculator**

**RESTORE DEFAULTS** 

| Click below to |
|----------------|

customize your system on a map. (optional)

**Draw Your System** 



Caution: Photovoltaic system performance predictions calculated by PVWatts<sup>®</sup> include many inherent assumptions and uncertainties and do not reflect variations between PV technologies nor site-specific characteristics except as represented by PWWatts<sup>®</sup> inputs. For example, PV modules with better performance are not differentiated within PVWatts<sup>®</sup> from lesser performing modules. Both NREL and private companies provide more sophisticated PV modeling tools (such as the System Advisor Model at https://sam.nrel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might see. For more information, please refer to this NREL report: The Error Report.

Disclaimer: The PVWatts<sup>®</sup> Model ("Model") is provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC ("Alliance") for the U.S. Department Of Energy ("DOE") and may be used for any purpose whatsoever.

The names DOE/NREL/ALLIANCE shall not be used in any representation, advertising, publicity or other manner whatsoever to endorse or promote any entity that adopts or uses the Model. DOE/NREL/ALLIANCE shall not provide any support, consulting, training or assistance of any kind with regard to the use of the Model or any updates, revisions or new versions of the Model.

YOU AGREE TO INDEMNIEY DOE/INEL/ALLIANCE, AND ITS AFFILIATES, OFFICERS, AGENTS, AND EMPLOYEES AGAINST ANY CLAIM OR DEMAND, INCLUDING REASONABLE ATTORNEYS' FEES, RELATED TO YOUR USE, RELIANCE, OR ADOPTION OF THE MODEL FOR ANY PURPOSE WHATSOEVER. THE MODEL IS PROVIDED BY DOE/NREL/ALLIANCE 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED. IN NO EVENT SHALL DOE/NREL/ALLIANCE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER. INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM ANY ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE MODEL.

The energy output range is based on analysis of 30 years of historical weather data, and is intended to provide an indication of the possible interannual variability in generation for a Fixed (open rack) PV system at this location.



System output may range from 141,550 to 150,340 kWh per year near this location.

| Month     | Solar Radiation              | AC Energy |
|-----------|------------------------------|-----------|
|           | (kWh / m <sup>2</sup> / day) | ( kWh )   |
| January   | 5.01                         | 10,107    |
| February  | 5.42                         | 9,759     |
| March     | 6.80                         | 13,129    |
| April     | 7.50                         | 13,670    |
| Мау       | 8.05                         | 14,841    |
| June      | 8.22                         | 14,397    |
| July      | 7.88                         | 13,937    |
| August    | 7.63                         | 13,595    |
| September | 7.30                         | 12,928    |
| October   | 6.47                         | 12,216    |
| November  | 5.43                         | 10,341    |
| December  | 4.69                         | 9,565     |
| nnual     | 6.70                         | 148,485   |

| Location | and | Station | Identification |
|----------|-----|---------|----------------|
|----------|-----|---------|----------------|

RESUITS

| <b>Requested Location</b> | 34.53, -117.22           |        |
|---------------------------|--------------------------|--------|
| Weather Data Source       | Lat, Lng: 34.53, -117.22 | 0.0 mi |
| Latitude                  | 34.53° N                 |        |
| Longitude                 | 117.22° W                |        |
|                           |                          |        |

#### **PV System Specifications**

| Monthly Irradiance    | Jan<br>0%  | Feb<br>0% | Mar<br>0% | Apr<br>0% | May<br>0% | June<br>0% | July<br>0% | Aug<br>0% | Sept<br>0% | Oct<br>0% | Nov<br>0% | Dec<br>0% |
|-----------------------|------------|-----------|-----------|-----------|-----------|------------|------------|-----------|------------|-----------|-----------|-----------|
| Bifacial              | No (0)     | No (0)    |           |           |           |            |            |           |            |           |           |           |
| Albedo                | From       | weath     | er file   |           |           |            |            |           |            |           |           |           |
| Ground Coverage Ratio | 0.4%       | 0.4%      |           |           |           |            |            |           |            |           |           |           |
| Inverter Efficiency   | 96%        | 96%       |           |           |           |            |            |           |            |           |           |           |
| DC to AC Size Ratio   | 1.2        | 1.2       |           |           |           |            |            |           |            |           |           |           |
| Array Azimuth         | 180°       | 80°       |           |           |           |            |            |           |            |           |           |           |
| Array Tilt            | <b>20°</b> |           |           |           |           |            |            |           |            |           |           |           |
| System Losses         | 14.08%     | 6         |           |           |           |            |            |           |            |           |           |           |
| Array Type            | Fixed      | (open     | rack)     |           |           |            |            |           |            |           |           |           |
| Module Type           | Stand      | ard       |           |           |           |            |            |           |            |           |           |           |
| DC System Size        | 80 kW      |           |           |           |           |            |            |           |            |           |           |           |

#### Performance Metrics

DC Capacity Factor 21.2%