

SOILS INVESTIGATION REPORT

SELF-STORAGE SITE DEVELOPMENT

PROJECT NO: LOCATION: 22E-050 12050 Itoya Vista Rd Apple Valley, CA 92308

December 27, 2022

PREPARED FOR: Stephanie Davis RKAA Architects, Inc. 2233 E Thomas Road Phoenix, AZ 85016

PREPARED BY: Ridgeline Engineering

2769 Boeing Way Stockton, California 95206 (209) 955-0110

SELF-STORAGE SITE DEVELOPMENT 12050 ITOYA VISTA RD APPLE VALLEY, CA 92308

TABLE OF CONTENTS

١.	INTRODUCTION	1
	A. Scope of Work B. Project Intent	
II.	FINDINGS	1
	 A. SITE OVERVIEW B. HISTORICAL RECORDS REVIEW C. SUBSURFACE CONDITIONS 	1
III.	CONCLUSIONS	1
	A. SOIL BEARING CAPABILITY B.SEISMIC DESIGN CRITERIA	
IV.	RECOMMENDATIONS	2
IV.	RECOMMENDATIONS	_
IV.	A. GENERAL B. Subgrade Preparation	2 2
IV.	A. GENERAL B. SUBGRADE PREPARATION C. FOUNDATION DESIGN	2 2 3
IV.	 A. GENERAL B. SUBGRADE PREPARATION C. FOUNDATION DESIGN D. EXTERIOR FLATWORK 	2 2 3 3
IV.	 A. GENERAL B. SUBGRADE PREPARATION C. FOUNDATION DESIGN D. EXTERIOR FLATWORK E. SITE DRAINAGE 	2 2 3 3 3
IV. V.	 A. GENERAL B. SUBGRADE PREPARATION C. FOUNDATION DESIGN D. EXTERIOR FLATWORK 	2 2 3 3 3
	 A. GENERAL B. SUBGRADE PREPARATION C. FOUNDATION DESIGN D. EXTERIOR FLATWORK E. SITE DRAINAGE 	2 2 3 3 3 3 3
	A. GENERAL	2 2 3 3 3 3 3 3 3 3

FIGURES

Figure 1: Vicinity Map Figure 2: Site Map Figure 3: Soil Boring Log 1 Figure 4: Soil Boring Log 2 Figure 5: Soil Boring Log 3 Figure 6: Unified Soil Classification System RIDGELINE ENGINEERING | 2769 BOEING WAY | STOCKTON, CA 95206 | P: 209.955.0110

I. INTRODUCTION

Ridgeline Engineering (RLE) has completed a site soils investigation in preparation of a new commercial building, located on 12050 Itoya Vista Rd in Apple Valley, CA. The purpose of the investigation was to explore the existing site conditions and to provide recommendations as they relate to the proposed development.

A. SCOPE OF WORK

The agreed upon scope of services for this project are as follows:

- 1. review of site conditions and records
- 2. subsurface exploration by means of drilling and sampling at three locations
- 3. laboratory testing of samples, analysis of results, and report preparation

B. PROJECT INTENT

It is understood that the project will consist of the design and construction a new building. The building is assumed to primarily consist of a bearing wall system with strip footings and some isolated column footings. The remainder of the site will consist of flatwork, landscaping, and driveway.

The site is relatively flat with bushes. Excavations and fills are expected to be less three feet.

II. FINDINGS

A. SITE OVERVIEW

The subject site is located on Bear Valley Rd in Apple Valley, CA. (Figure 1). The site is bounded on the Itoya Vista Rd on the east and Bear Valley Rd to the north. At the time of the field exploration on August 11th, 2022, the site had a few bushes scattered around the site.

B. HISTORICAL RECORDS REVIEW

A review of available historical records indicates the site conditions have not changed since the earliest aerial photographic evidence taken in 1946. Based on the available historical records, there is no evidence found of any existing foundation or building previously on the site.

C. SUBSURFACE CONDITIONS

Three exploratory borings were drilled at the site on August 11th, 2022. The borings were taken at the locations shown on the attached Site Map (Figure 2). At the completion of drilling, the borings were backfilled.

Groundwater was not encountered during the subsurface explorations.

III. CONCLUSIONS

A. SOIL BEARING CAPABILITY

It is RLE's opinion that the native soils will have the ability to adequately support the proposed development. However, proper compaction and moisture conditioning of the surface and near-surface soils will be necessary to provide sufficient support to the building foundation and surrounding flatwork and pavement sections. Use of engineered fill may also be acceptable, when approved as needed.

SITE-STORAGE SITE DEVELOPMENT | APPLE VALLEY, CA | 22E-050

RIDGELINE ENGINEERING | 2769 BOEING WAY | STOCKTON, CA 95206 | P: 209.955.0110

B. SEISMIC DESIGN CRITERIA

The following seismic parameters are based on criteria identified in the American Society of Civil Engineers (ASCE) Standard 7-16 for seismic design and were determined using the site latitude and longitude and data obtained by the United States Geological Survey (USGS):

	SITE L	OCATION	
Latitude:	38.25508264	Longitude:	-120.35343432
Factor/C	oefficient	Table/Figure	Value
Short-Period MCE at 0.2 seconds	S₅	Figure 22-1	1.205 g
1.0 second Period MCE	S ₁	Figure 22-2	0.459 g
Soil Class	Site Class	Table 20.3-1	Null
Site Coefficient	Fa	Table 11.4-1	1.2
Site Coefficient	Fv	Table 11.4-2	Null
Adjusted MCE Spectral	Sms	Equation 11.4-1	1.446 g
Response Parameters	S _{M1}	Equation 11.4-2	Null
Design Spectral Acceleration	Sds	Equation 11.4-3	0.964
Parameters	S _{D1}	Equation 11.4-4	Null
Colomia Doolan Catagori	Risk Category (I to IV)	Table 11.6-1	I
Seismic Design Category	Risk Category (I to IV)	Table 11.6-2	

Notes: MCE – Maximum Considered Earthquake; g- gravity

Table 1: ASCE 7-16 SEISMIC DEISGN PARAMETERS

IV. RECOMMENDATIONS

A. GENERAL

The recommendations in this report assume that excavations and fills will be less than three feet and that construction will occur in the dry months (late spring to fall).

A representative from RLE should be present during all site preparation operations and foundation construction to ensure compliance with our recommendations.

B. SUBGRADE PREPARATION

The site should be cleared of all debris and the surface should be stripped of all vegetation.

For the budling foundation native soil should be over excavated by 12 inches in depth extended 5 feet from the perimeter, scarified, moisture conditioned, and compacted at 90% of the maximum dry density. All compacted soil shall have less than 2" aggregate size. Depth of scarification of subgrade may vary depending on seasonal fluctuations. The moisture content and compaction of the subgrade should be maintained as described above until the construction of the foundation is complete. Any imported fill and native subgrade soil should be evenly brought to optimum moisture content and uniformly compacted per ASTM D1557 in 6-inch lifts. A minimum of 4-inch layer of ³/₄-1 inch crushed rock should be placed over the compacted soils. A moisture/vapor barrier consisting of polyolefin at least 15 mil thick should be placed over the crushed rock. It is essential that the polyolefin sheet is overlapped 6 inches or more with no heavy traffic allowed on the prepared pad prior to pour. Efforts to prevent punctures through the polyolefin sheet shall be made and patch any holes created.

The upper 6 inches of the flatwork subgrades should be evenly brought to optimum moisture content and uniformly compacted to no less than 90% of the maximum dry density. The subgrade should be kept in a moist condition and final compaction should be

performed just before placement of aggregate base. A minimum of 2 inches of aggregate base should be placed for all surrounding flatwork. Aggregate bases shall be compacted to no less than 95% of the maximum dry density.

C. FOUNDATION DESIGN

Foundations that are bearing on existing compacted soil may be designed for a maximum allowable soil bearing pressure of 1,600 pounds per square foot (psf) for gravity load combinations and 2,000 psf for lateral load combinations. All footings should extend at least 18 inches below the lowest adjacent pad grade and have a width no less than 16 inches. Slab should be a minimum of 4 inch thick and contain appropriate reinforcement (min. ratio of 0.003) and joints to control cracking and should be placed over a vapor barrier over at least a 4-inch-thick layer of ³/₄-1 inch crushed rock.

D. EXTERIOR FLATWORK

All flatwork should be at least 3.5 inches thick, should contain appropriate reinforcement and joints to control cracking, and should be placed over at least a 2-inch-thick layer of gravel.

Standard practices, set forth by the Portland Cement Association (PCA), should be followed for the placement, curing, joint depth spacing, construction, and placement of concrete during exterior flatwork construction.

E. SITE DRAINAGE

Grades should slope away from the building with a minimum slope of 2% for at least 5 feet to prevent moisture collection adjacent to and beneath the foundation.

V. LIMITATIONS

The conclusions and recommendations provided in this report are based on the project intent, publicly available records, and results obtained from laboratory testing of the collected samples. This information is assumed to be representative of the entire site as it is not feasible to test every location of the site at every depth. Any conditions encountered that are contrary to the findings and recommendations in this report should be reported to RLE immediately. Although every effort has been made to provide a thorough investigation, no warranty is given.

This report will expire in 3 years and will need to be updated if construction has not been completed by that time.

A. GENERAL INFORMATION

The geotechnical engineering report for the proposed building to be constructed on12050 Itoya Vista Rd, California was authorized by RKAA Architects, Inc. This authorization was for the investigation described in the proposal letter sent to RKAA Architects, Inc.

B. FIELD EXPLORATION

On August 11th, 2022, three borings were hand drilled at locations indicated on the site map attached to this report (Figure 2). A disturbed sample was recovered from boring 1 due to loose soil conditions. Relatively undisturbed samples were recovered from boring 2 and boring 3 using a 2-inch inside diameter sample puller. ASTM D1452 utilizes a sample extractor that was driven by a 10-pound hammer free falling from 3 feet. The number of blows of the hammer required to drive the sampler each was recorded. The penetration resistance or "blow count" is found to be the sum of the blows required to drive the sampler the 6-inchs the length of the sample chamber.

The samples were stored in 2-inch diameter by 6-inch long thin-walled plastic tube. Following standard operating procedures, the soils were visually classified by the field engineer and ends of the tubes were sealed immediately. All samples were then taken to the laboratory for additional soil classification and testing.

SITE-STORAGE SITE DEVELOPMENT | APPLE VALLEY, CA | 22E-050

RIDGELINE ENGINEERING | 2769 BOEING WAY | STOCKTON, CA 95206 | P: 209.955.0110

Boring logs describing the soils found in each boring location can be found in Figures 3, 4, and 5. The California Department of Transportation's Unified Soil Classification System that was used can be found in Figure 6.

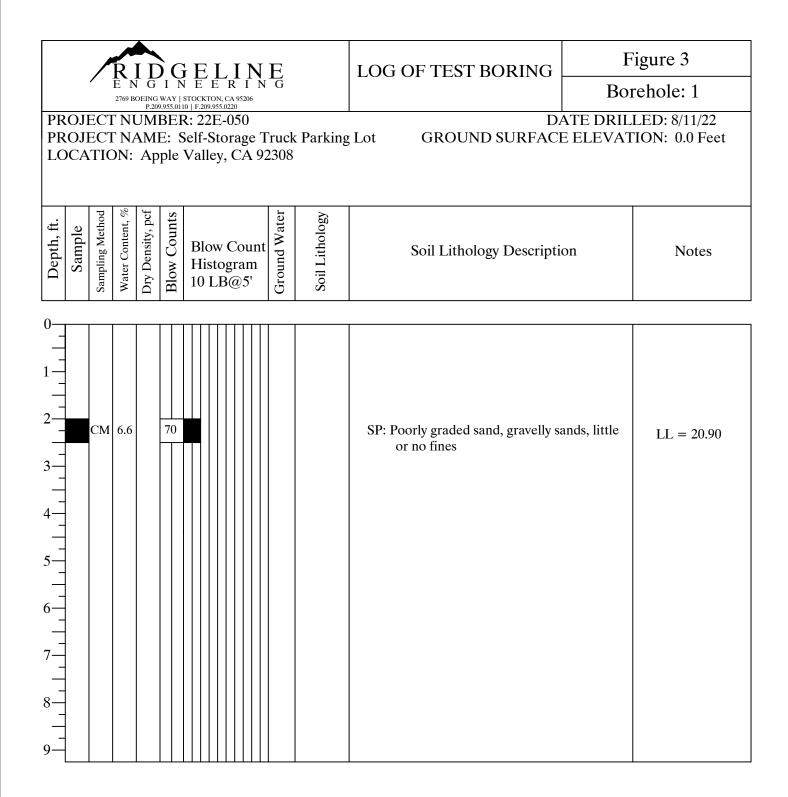
C. LABORATORY TESTING

Per ASTM D4959, relatively undisturbed samples were tested to determine the natural moisture content and the dry unit weight.

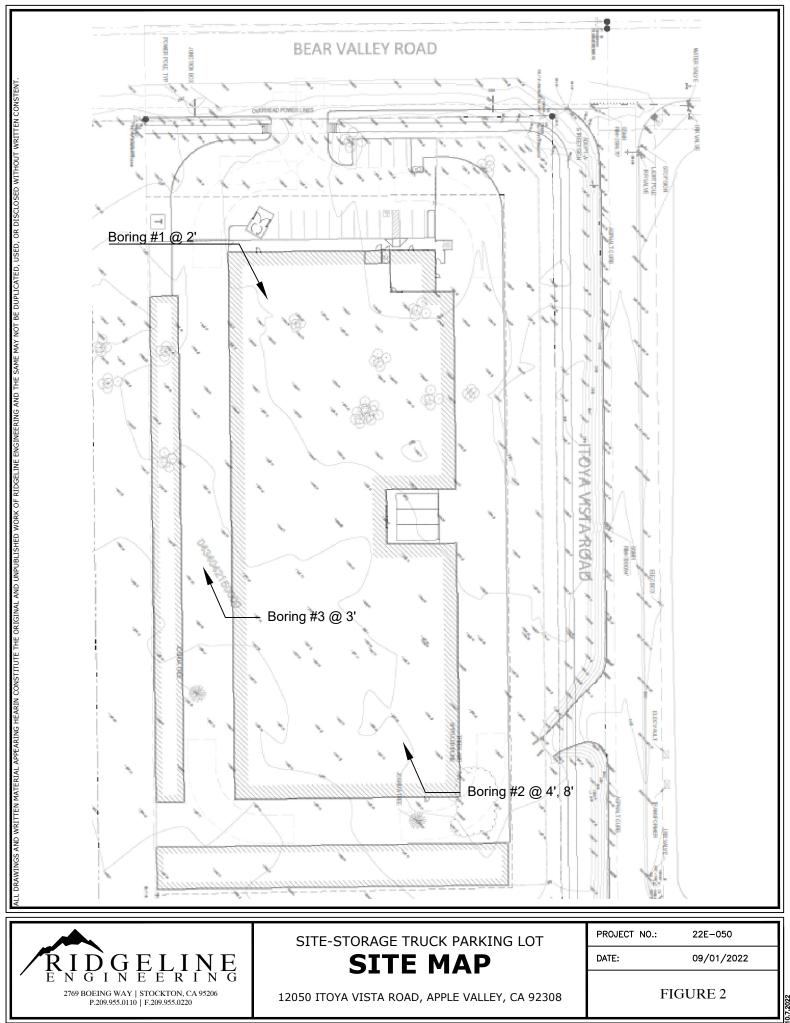
Per ASTM D422, a soil sample was subjected to particle size distribution testing for soil classification.

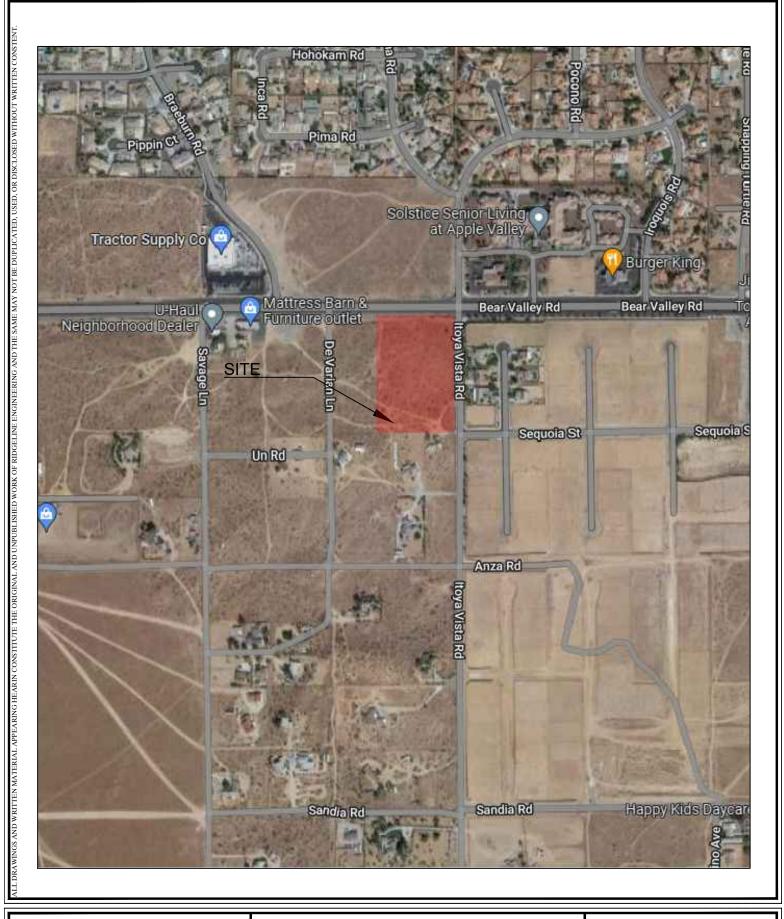
Per ASTM 1452, soil samples were hand augured and extracted relatively undisturbed.

Per ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils


Respectfully,

Jordan Baldwin, PE, Principal Engineer



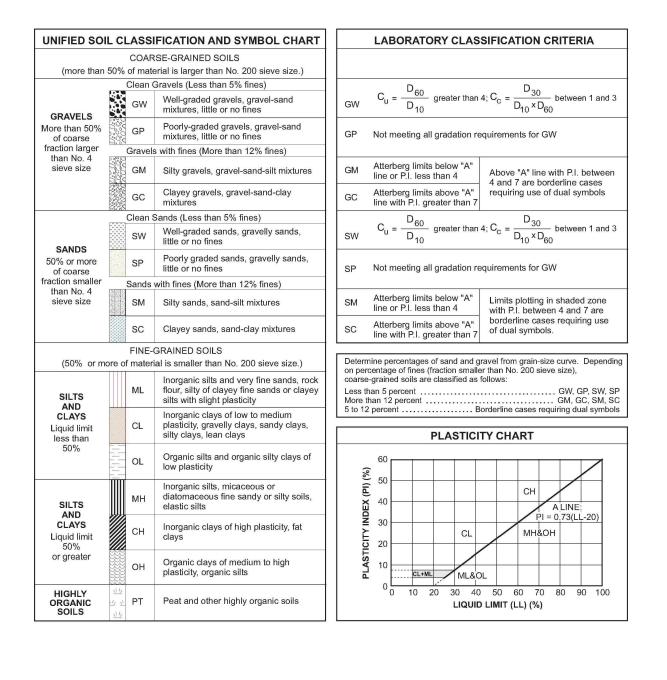

FIGURES

			R E N	I D G	$\hat{O}_{I}G$	E	L	I R 1	N	E			LOG OF TEST BORING		igure 4
PR	OJI	ЕСТ	T NU T NA	P.209 JM MI		elf-S	955.02 E-0 Sto	220 050 rag) ge [Ггис 2308	k Parl	ting		ATE DRIL	rehole: 2 LED: 8/11/22 TON: 0.0 Feet
Depth, ft.	Sample	Sampling Method	Water Content, $\%$	Dry Density, pcf) W	Blo His 10 I	tog	gra	m	Ground Water	Soil Lithology		Soil Lithology Description	on	Notes
0-									Π						
		СМ	3.1		70								SM: Silty sands, sand-silt mixtures	5	LL = 32.88 PL = 26.50 PI = 6.38
, 8 9		СМ	5.2		70								GM: Silty gravels, gravel-sand-silt r	nixtures	LL = 21.64

	/		R] E N 2769 B0								Ē	ניין			OG OF TEST BORING		Figure 5 rehole: 3
PRO PRO LOO	ЭJЕ	CT CT	NU N/	P.209 JM] AM]	9.955.01 BEI E: \$	10 F. R: 2 Self	209.95 22E E-S1	55.02 E-C toi	20)50 rag) ;e [: Par	king			LED: 8/11/22 FION: 0.0 Feet
Depth, ft.	Sample	Sampling Method	Water Content, %	Dry Density, pcf	Blow Counts	Η	lov list) L	og	gra	m	t	Ground water	Soil Lithology		Soil Lithology Description		Notes
									Π		Τ						
$ \begin{array}{c} 1 \\ - \\ 2 \\ - \\ - \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	C	CM	7.8		70										SW: Well-graded sands, gravelly sands, or no fines	little	LL = 31.59

SITE-STORAGE TRUCK PARKING LOT VICINITY MAP

PROJECT NO .: 22E-050 DATE:


09/01/2022

12050 ITOYA VISTA ROAD, APPLE VALLEY, CA 92308

FIGURE 1

CALIFORNIA DEPARTMENT OF TRANSPORTATION (CALTRANS)

UNIFIED SOIL CLASSIFICATION SYSTEM

SITE-STORAGE TRUCK PARKING LOT

PROJECT NO.: 22E-050

DATE:

09/01/2022

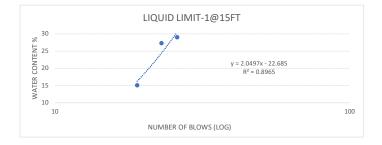
12050 ITOYA VISTA ROAD, APPLE VALLEY, CA 92308

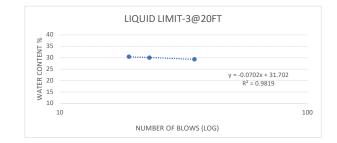
FIGURE 5

OSHPD

12050 Itoya Vista Rd, Apple Valley, CA 92308, USA

Latitude, Longitude: 34.470421, -117.217029


Neighb Goog	U-Haul Oorhood Dealer	Mattress Barn & Furniture outlet	Bear Valley Rd Itoya Vista Rd Sequoia St	Bear Valley Rd Sequoia St
				Map data ©2022
Date			9/1/2022, 11:49:20 AM	
-	ode Reference Document		ASCE7-16	
Risk Cates			 D. Default (See Section 11.4.2)	
Sile Class	•		D - Default (See Section 11.4.3)	
Туре	Value	Description	tion (for 0.0 cocord nonical)	
S _S	1.205		tion. (for 0.2 second period)	
S ₁	0.459		tion. (for 1.0s period)	
S _{MS}	1.446		ctral acceleration value	
S _{M1}	null -See Section 11.4.8	Site-modified spec	tral acceleration value	
S _{DS}	0.964	Numeric seismic d	lesign value at 0.2 second SA	
S _{D1}	null -See Section 11.4.8	Numeric seismic d	lesign value at 1.0 second SA	
Туре	Value	Description		
SDC	null -See Section 11.4.8	Seismic design category		
Fa	1.2	Site amplification factor at 0.2 second	d	
Fv	null -See Section 11.4.8	Site amplification factor at 1.0 second	b	
PGA	0.517	MCE _G peak ground acceleration		
F _{PGA}	1.2	Site amplification factor at PGA		
PGA _M	0.62	Site modified peak ground acceleration	on	
ΤL	12	Long-period transition period in seco	nds	
SsRT	1.205	Probabilistic risk-targeted ground mo	tion. (0.2 second)	
SsUH	1.287	Factored uniform-hazard (2% probab	ility of exceedance in 50 years) spectral	acceleration
SsD	1.571	Factored deterministic acceleration v	alue. (0.2 second)	
S1RT	0.459	Probabilistic risk-targeted ground mo	· · · ·	
S1UH	0.499		ility of exceedance in 50 years) spectral	acceleration.
S1D	0.6	Factored deterministic acceleration v	. ,	
PGAd	0.645	Factored deterministic acceleration v	,	
PGA _{UH}	0.517	Uniform-hazard (2% probability of ex	ceedance in 50 years) Peak Ground Acc	eleration
C _{RS}	0.936			


Project No.: 22E-050 Date: 12/5/2022

PROJECT DESCRIPTION SELF-STORAGE TRUCK PARKING LOT 12050 ITOYA VISTA RD APPLE VALLEY, CA 92308

ATTERBERG LIMITS

							Liquid Lii	nit									Plastic Limi	t		
				1			2	2			3				4			5		
BORING #	BORING DEPTH (FT)	BLOW COUNT	Wet Sample	Dry Sample	Moisture %	BLOW COUNT	Wet Sample	Dry Sample	Moisture %	BLOW COUNT	Wet Sample	Dry Sample	Moisture %	Wet Sample	Dry Sample	Moisture %	Wet Sample	Dry Sample	Moisture %	AVERAGE
	3 3	32	37.8	29.3	29.01	27	36.6	27.8	31.65	8	33.8	25.2	34.13	0	0	#DIV/0!	0	0	0.00	0.00
												Limit, LL =					Plasticity	/ Index, PI =		
-	2 4	20	32.8	24.7	32.79	28	31.2	23.6	32.20	19		29.7 Limit, LL =	33.67 32.88	3.2	2.5	28.00		2.4 / Index, PI =		
	2 8	12	44.2	36.1	22.44	29	47.3	39.2	20.66	14	35.7	29.3	21.84	0	0	#DIV/0!	0	0	0.00	0.00
											•	d Limit, LL =					Plasticity	/ Index, PI =		
:	1 2	8	40.6	33.3	21.92	14	34	28.2	20.57	28		29.2 Limit, LL =		0	0	#DIV/0!	0 Plasticity	0 / Index, PI =	0.00 0.00	

Project No.: 22E-050 Date: 12/27/2022

PROJECT DESCRIPTION 12050 Itoya Vista Rd Self Storage Apple Valley ULTIMATE BEARING CAPACITY-TERZAGHI STRIP FOOTING Silty sand @4 FT
ULTIMATE BEARING CAPACITY-TERZAGHI STRIP FOOTING
Silty sand @4 FT
Qu=cNc+YDNq+.5YBN _Y
S _{uc} : 0 pst
c: 0 psf N _c : 37.2 Φ: 30 °
Υ _{WET} : 110 pcf N _Q : 22.5 FS: 4
N _γ : 19.7 SPT: 4
FOOTING DIMENSIONS
Depth, D: 2 ft
Width, B: 1.5 ft
Q _u : 6575 psf Q _a : <u>1644</u> psf
ULTIMATE BEARING CAPACITY-TERZAGHI SQUARE FOOTING
Silty sand @4 FT
Qu=1.3cNc+YDNq+.4YBN _Y
S _{uc} : 0 pst
S _{uc} : 0 pst c: 0 psf N _c : 37.2 Φ: 30 °
Suc: 0 pst c: 0 psf Nc: 37.2 Φ: 30 ° Y _{WET} : 110 pcf No: 22.5 FS: 4
Suc: 0 pst c: 0 psf Nc: 37.2 Ф: 30 ° Y _{wer} : 110 pcf No: 22.5 FS: 4 Nr: 19.7 SPT: 4
Suc: 0 pst c: 0 psf Nc: 37.2 Φ: 30 ° Y _{WET} : 110 pcf Nq: 22.5 FS: 4 FOOTING DIMENSIONS
Suc: 0 pst c: 0 psf Nc: 37.2 Φ: 30 ° Y _{WET} : 110 pcf Nq: 22.5 FS: 4 FOOTING DIMENSIONS
Suc: 0 pst c: 0 psf Nc: 37.2 Φ: 30 ° Ywer: 110 pcf Nq: 22.5 FS: 4 FOOTING DIMENSIONS Depth, D: 2 ft
Suc: 0 pst c: 0 psf Nc: 37.2 Φ: 30 ° Ywer: 110 pcf Nq: 22.5 FS: 4 FOOTING DIMENSIONS Depth, D: 2 ft