
APPLE VALLEY 84

AIR QUALITY ANALYSIS

Prepared By:

Haseeb Qureshi | hqureshi@urbanxroads.com
Ali Dadabhoy | adadabhoy@urbanxroads.com

A large, semi-transparent watermark consisting of a stylized 'X' shape. The 'X' is composed of several overlapping triangles in shades of blue and light blue, creating a geometric pattern that spans the width of the page.

Reference Number
16408-02 AQ Report

Agency
Town of Apple Valley

Date
November 3, 2025

TABLE OF CONTENTS

EXECUTIVE SUMMARY	8
ES.1 Summary of Findings.....	8
ES.2 Regulatory Requirements	8
ES.3 Project Mitigation Measures.....	9
1 INTRODUCTION	11
1.1 Site Location	11
1.2 Project Description.....	11
2 AIR QUALITY SETTING	14
2.1 Mojave Desert Air Basin.....	14
2.2 Regional Climate	14
2.3 Air Pollutants.....	15
2.4 Existing Air Quality	23
2.5 Regional Air Quality.....	26
2.6 Local Air Quality	26
2.7 Regulatory Background	27
2.8 Regional Air Quality Improvements	29
3 PROJECT AIR QUALITY IMPACT	36
3.1 Introduction.....	36
3.2 Standards of Significance	36
3.3 Models Employed To Analyze Air Quality	37
3.4 Construction Emissions	37
3.5 Operational Emissions.....	41
3.6 CO "Hot Spot" Analysis.....	48
3.7 AQMP	48
3.8 Potential Impacts to Sensitive Receptors	49
3.9 Odors	52
3.10 Cumulative Impacts.....	52
5 REFERENCES	54
6 CERTIFICATION	56

APPENDICES

APPENDIX 2.1: STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS

APPENDIX 3.1: CALEEMOD CONSTRUCTION AND OPERATIONS EMISSIONS MODEL OUTPUTS

APPENDIX 3.2: CALEEMOD CONSTRUCTION MITIGATED EMISSIONS MODEL OUTPUTS

LIST OF EXHIBITS

EXHIBIT 1-A: LOCATION MAP	12
EXHIBIT 1-B: SITE PLAN	13
EXHIBIT 2-A: DPM AND DIESEL VEHICLE MILES TREND	35
EXHIBIT 3-A: SENSITIVE RECEPTOR LOCATIONS	51

LIST OF TABLES

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS.....	8
TABLE 2-1: CRITERIA POLLUTANTS (1 OF 7)	15
TABLE 2-1: CRITERIA POLLUTANTS (2 OF 7)	16
TABLE 2-1: CRITERIA POLLUTANTS (3 OF 7)	17
TABLE 2-1: CRITERIA POLLUTANTS (4 OF 7)	18
TABLE 2-1: CRITERIA POLLUTANTS (5 OF 7)	19
TABLE 2-1: CRITERIA POLLUTANTS (6 OF 7).....	20
TABLE 2-1: CRITERIA POLLUTANTS (7 OF 7)	21
TABLE 2-2: ADDITIONAL POLLUTANTS (1 OF 3)	21
TABLE 2-2: ADDITIONAL POLLUTANTS (2 OF 3)	22
TABLE 2-2: ADDITIONAL POLLUTANTS (3 OF 3)	23
TABLE 2-3: AMBIENT AIR QUALITY STANDARDS (1 OF 2)	24
TABLE 2-3: AMBIENT AIR QUALITY STANDARDS (2 OF 2)	25
TABLE 2-4: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE MDAB.....	26
TABLE 2-5: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2021-2023	27
TABLE 2-6: MDAB O3 TREND	30
TABLE 2-7: MDAB AVERAGE 24-HOUR CONCENTRATION PM10 TREND (BASED ON FEDERAL STANDARD) ¹	31
TABLE 2-8: MDAB ANNUAL AVERAGE CONCENTRATION PM10 TREND (BASED ON STATE STANDARD) ¹	31
TABLE 2-9: MDAB 24-HOUR AVERAGE CONCENTRATION PM2.5 TREND (BASED ON FEDERAL STANDARD) ¹	32
TABLE 2-10: MDAB ANNUAL AVERAGE CONCENTRATION PM2.5 TREND (BASED ON STATE STANDARD) ¹	32
TABLE 2-11: MDAB 1-HOUR AVERAGE CONCENTRATION NO2 TREND (BASED ON FEDERAL STANDARD)	33
TABLE 2-12: MDAB 1-HOUR AVERAGE CONCENTRATION NO2 TREND (BASED ON STATE STANDARD).....	33
TABLE 3-1: REGIONAL EMISSIONS SIGNIFICANCE THRESHOLDS.....	36
TABLE 3-2: CONSTRUCTION DURATION	38
TABLE 3-3: CONSTRUCTION EQUIPMENT ASSUMPTIONS	39
TABLE 3-4: CONSTRUCTION TRIP ASSUMPTIONS	39
TABLE 3-5: CONSTRUCTION EMISSIONS SUMMARY – WITHOUT MITIGATION	40
TABLE 3-6: CONSTRUCTION EMISSIONS SUMMARY – WITH MITIGATION	41
TABLE 3-7: PASSENGER CAR FLEET MIX	42
TABLE 3-8: TRUCK FLEET MIX	43
TABLE 3-9: PEAK OPERATIONAL EMISSIONS – WITHOUT MITIGATION	45
TABLE 3-10: AIR QUALITY THRESHOLDS FOR NEIGHBORING AIR DISTRICTS.....	46
TABLE 3-11: ACTIVITY BY AIR DISTRICT	46
TABLE 3-12: PEAK OPERATIONAL EMISSIONS – EKAPCD	47
TABLE 3-13: PEAK OPERATIONAL EMISSIONS – SJVAPCD	47
TABLE 3-14: PEAK OPERATIONAL EMISSIONS – AVAQMD	47
TABLE 3-15: PEAK OPERATIONAL EMISSIONS – SCAQMD	47

LIST OF ABBREVIATED TERMS

%	Percent
$\mu\text{g}/\text{m}^3$	Microgram per Cubic Meter
1992 CO Plan	1992 Federal Attainment Plan for Carbon Monoxide
2016-2040 RTP/SCS	2016-2040 Regional Transportation Plan/Sustainable Communities Strategy
AB 2595	California Clean Air Act
AERMOD	American Meteorological Society/Environmental Protection Agency Regulatory Model
APN	Assessor's Parcel Number
AQIA	Air Quality Impact Analysis
AQMP	Air Quality Management Plan
BACT	Best Available Control Technology
C_2Cl_4	Perchloroethylene
C_4H_6	1,3-butadiene
C_6H_6	Benzene
$\text{C}_2\text{H}_3\text{Cl}$	Vinyl Chloride
$\text{C}_2\text{H}_4\text{O}$	Acetaldehyde
CAA	Federal Clean Air Act
CAAQS	California Ambient Air Quality Standards
CalEEMod	California Emissions Estimator Model
CalEPA	California Environmental Protection Agency
CALGreen	California Green Building Standards Code
CAPCOA	California Air Pollution Control Officers Association
CARB	California Air Resources Board
CCR	California Code of Regulations
CEC	California Energy Commission
CEQA	California Environmental Quality Act
CEQA Guidelines	2019 CEQA Statute and Guidelines
CH_2O	Formaldehyde
City	Town of Apple Valley
CO	Carbon Monoxide
COH	Coefficient of Haze
COHb	Carboxyhemoglobin
Cr(VI)	Chromium
EIR	Environmental Impact Report
EMFAC	Emissions FACTor Model
EPA	Environmental Protection Agency
EV	Electric Vehicle
GHG	Greenhouse Gas
GVWR	Gross Vehicle Weight Rating

H ₂ S	Hydrogen Sulfide
HEPA	High Efficiency Particulate Air
HI	Hazard Index
hp	Horsepower
HPLV	High-Pressure-Low-Volume
lbs	Pounds
lbs/day	Pounds Per Day
LST	Localized Significance Threshold
LST Methodology	Final Localized Significance Threshold Methodology
MDAB	Mojave Desert Air Basin
MDAQMD	Mojave Desert Air Quality Management District
MICR	Maximum Individual Cancer Risk
MM	Mitigation Measures
mph	Miles Per Hour
MWELO	California Department of Water Resources' Model Water Efficient
N ₂	Nitrogen
N ₂ O	Nitrous Oxide
NAAQS	National Ambient Air Quality Standards
NO	Nitric Oxide
NO ₂	Nitrogen Dioxide
NO _x	Nitrogen Oxides
O ₂	Oxygen
O ₃	Ozone
O ₂ Deficiency	Chronic Hypoxemia
OBD-II	On-Board Diagnostic
ODC	Ozone Depleting Compounds
Pb	Lead
PM	Particulate Matter
PM ₁₀	Particulate Matter 10 microns in diameter or less
PM _{2.5}	Particulate Matter 2.5 microns in diameter or less
ppm	Parts Per Million
Project	Apple Valley 84
RECLAIM	Regional Clean Air Incentives Market
ROG	Reactive Organic Gases
SB	Senate Bill
SCAG	Southern California Association of Governments
SCAQMD	South Coast Air Quality Management District
sf	Square Feet
SIPs	State Implementation Plans
SO ₂	Sulfur Dioxide
SO ₄	Sulfates
SO _x	Sulfur Oxides

SRA	Source Receptor Area
TAC	Toxic Air Contaminant
Title 24	California Building Code
TITLE I	Non-Attainment Provisions
TITLE II	Mobile Sources Provisions
TRU	Transport Refrigeration Units
VICS	Voluntary Interindustry Commerce Solutions
VMT	Vehicle Miles Traveled
VOC	Volatile Organic Compounds

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this Apple Valley 84 Air Quality Impact Analysis (AQIA) are summarized below based on the significance criteria in Section 4 of this report consistent with Appendix G of the CEQA Guidelines (CEQA Guidelines) (1). Table ES-1 shows the findings of significance for each potential air quality impact under CEQA before and after any required mitigation measures (MM) described below.

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Analysis	Report Section	Significance Findings	
		Unmitigated	Mitigated
Regional Construction Emissions	3.4	<i>Potentially Significant</i>	<i>Less Than Significant</i>
Regional Operational Emissions	3.5	<i>Less Than Significant</i>	<i>n/a</i>
CO "Hot Spot" Analysis	3.6	<i>Less Than Significant</i>	<i>n/a</i>
Air Quality Management Plan	3.7	<i>Potentially Significant</i>	<i>Less Than Significant</i>
Sensitive Receptors	3.8	<i>Less Than Significant</i>	<i>n/a</i>
Odors	3.9	<i>Less Than Significant</i>	<i>n/a</i>
Cumulative Impacts	3.10	<i>Potentially Significant</i>	<i>Less Than Significant</i>

ES.2 REGULATORY REQUIREMENTS

The Mojave Desert Air Quality Management District (MDAQMD) has implemented various rules and regulations to control air pollution sources within the Mojave Desert Air Basin (MDAB) and to support air quality standards for land use development projects. The following rules that are currently applicable during construction activity for this Project are described below:

MDAQMD Rules 203 and 219

The purpose of Rule 203 is to specify the equipment and processes that would and would not require an MDAQMD air permit. Additionally, per Rule 219, it is anticipated that the Project Applicant would be required to obtain MDAQMD air permits for the emergency fire pumps that would be included in the Project.

MDAQMD Rule 403

The purpose of this rule is to reduce the amount of particulate matter less than 10 microns (PM₁₀) entrained in the ambient air from anthropogenic fugitive dust sources within the MDAQMD by requiring actions to prevent, reduce, or mitigate fugitive dust. The following measures shall be incorporated into Project plans and specifications as implementation of Rule 403 (2).

- Use periodic watering for short-term stabilization of Disturbed Surface Area to minimize visible fugitive dust emissions. For purposes of this Rule, use of a water truck to maintain moist

disturbed surfaces and actively spread water during visible dusting episodes shall be considered sufficient to maintain compliance.

- Take actions sufficient to prevent project-related trackout onto paved surfaces.

MDAQMD Rule 1113

The purpose of this rule is to limit the quantity of volatile organic compounds (VOC) in architectural coatings. The following measures shall be incorporated into Project plans and specifications as implementation of MDAQMD Rule 1113 (3).

- Only "Low-VOC" paints consistent with MDAQMD Rule 1113 shall be used.

ES.3 PROJECT MITIGATION MEASURES

ES.3.1 Construction-Source Mitigation Measures

The Project construction-source emissions have the potential to exceed MDAQMD regional threshold for VOC emissions prior to mitigation. With implementation of mitigation measure MM AQ-1, Project VOC emissions would be reduced to less than significant levels. As such, Project construction-source VOC emission impacts are therefore considered less than significant.

MM AQ-1

During construction, the construction contractor shall, at a minimum, use "Super-Compliant" low VOC paints which have been reformulated to exceed the regulatory VOC limits put forth by MDAQMD's Rule 1113. Super-Compliant low VOC paints shall be no more than 10 grams per liter of VOC or less for all interior and exterior building coatings. Alternatively, the applicant may utilize a tilt-up concrete building that does not require the use of architectural coatings. This mitigation measure shall be noted on construction drawings verified by the Town of Apple Valley prior to issuance of any construction permits and during coating activities.

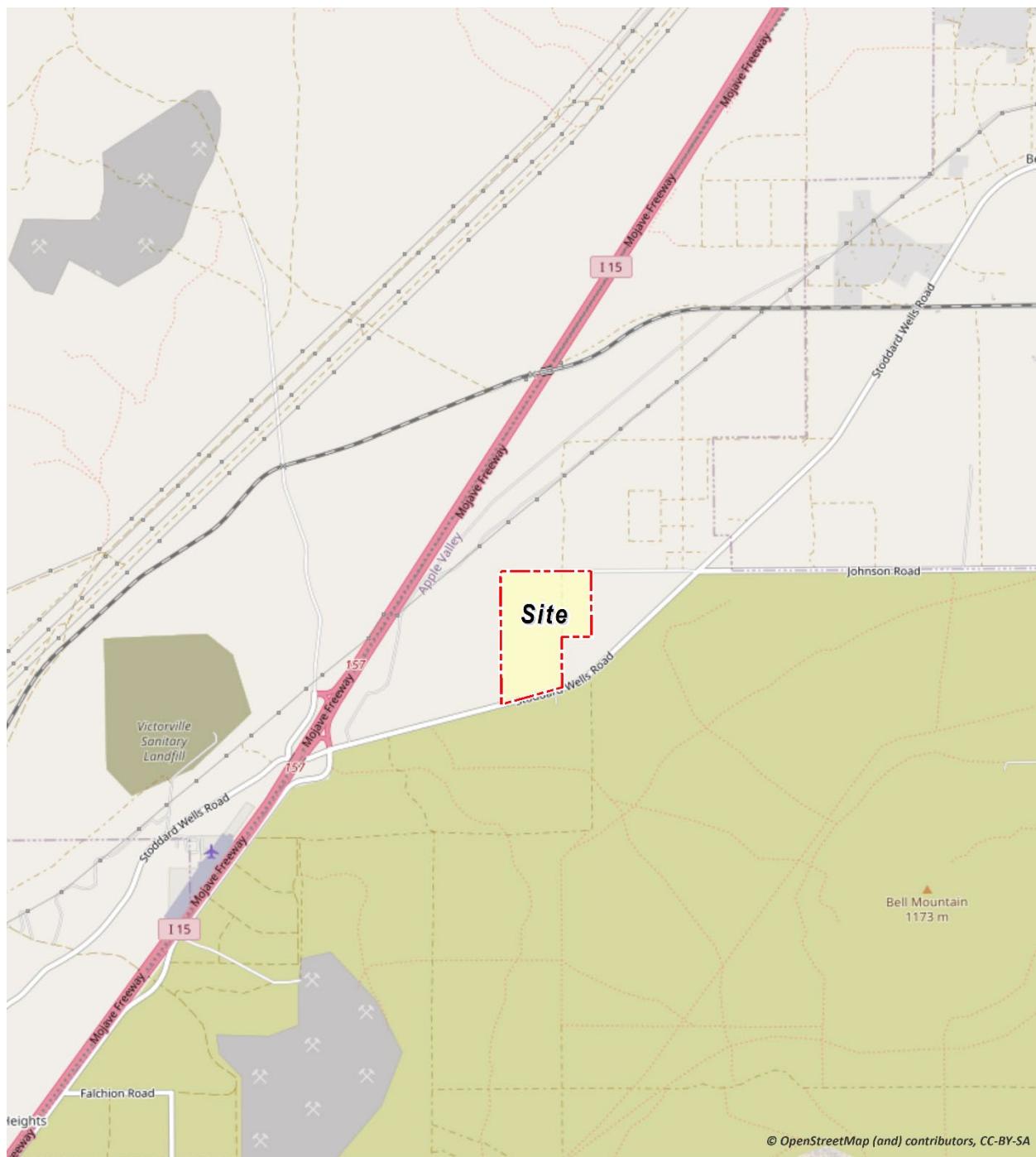
ES.3.2 Operational-Source Mitigation Measures

Unmitigated Project operational-source emissions would not exceed MDAQMD regional thresholds, thus implementation of operational mitigation measures is not required.

This page intentionally left blank

1 INTRODUCTION

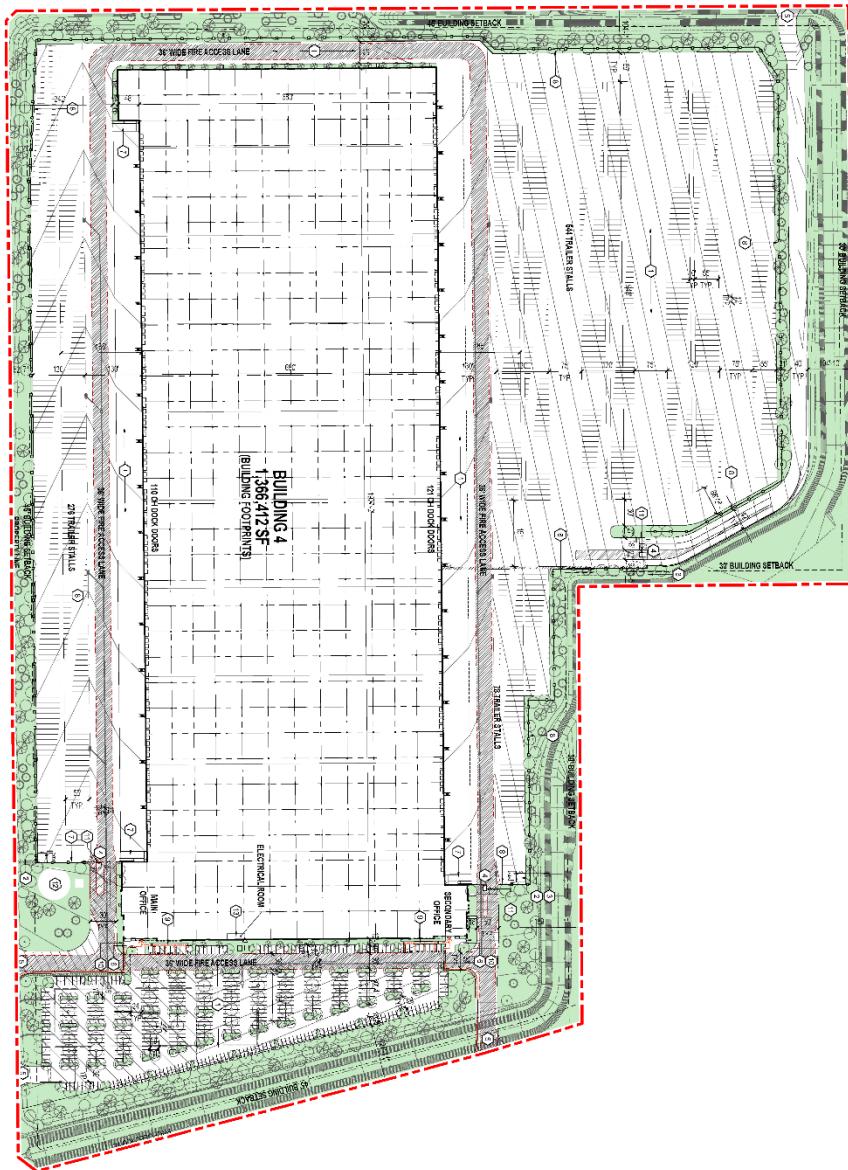
This report presents the results of the AQIA prepared by Urban Crossroads, Inc., for the proposed Apple Valley 84 (Project). The purpose of this AQIA is to evaluate the potential impacts to air quality associated with construction and operation of the Project and recommend measures to mitigate impacts considered potentially significant in comparison to thresholds established by the MDAQMD.


1.1 SITE LOCATION

The Project site is located north of Stoddard Wells Road and south of Johnson Road in the Town of Apple Valley, as shown in Exhibit 1-A.

1.2 PROJECT DESCRIPTION

The Project is proposed to consist of the development of a single industrial warehouse and distribution building totaling 1,381,412 square feet. It is proposed that the Project mix will assume 10% General Light Industrial, 15% High-Cube Cold Storage Warehouse use and 75% High-Cube Fulfillment (Non-Sort) Center Warehouse use. The Project is anticipated to have an Opening Year of 2028. A preliminary site plan for the proposed Project is shown in Exhibit 1-B.


EXHIBIT 1-A: LOCATION MAP

LEGEND:

[] Site Boundary

EXHIBIT 1-B: SITE PLAN

LEGEND:
Site Boundary

2 AIR QUALITY SETTING

This section provides an overview of the existing air quality conditions in the Project area and region.

2.1 MOJAVE DESERT AIR BASIN

The Project site is located in the portion of the Town of Apple Valley in San Bernardino County that is part of the MDAB and is under the jurisdiction of the MDAQMD. The air quality assessment for the Project evaluates emissions impacts associated with short-term construction and long-term operation of the Project. A number of air quality modeling tools are available to assess the air quality impacts of projects. In addition, certain air districts, such as the MDAQMD, have created guidelines and requirements to conduct air quality analyses. The MDAQMD's current guidelines, included in its *California Environmental Quality Act and Federal Conformity Guidelines* (August 2016), were adhered to in the assessment of air quality impacts for the Project.

2.2 REGIONAL CLIMATE

Air quality in the Project area is not only affected by various emissions sources (mobile, industry, etc.) but is also affected by atmospheric conditions such as wind speed, wind direction, temperature, and rainfall.

The MDAB is an assemblage of mountain ranges interspersed with long broad valleys that often contain dry lakes. Many of the lower mountains within the vast terrain rise from 1,000 to 4,000 feet above the valley floor. Prevailing winds in the MDAB are out of the west and southwest. These prevailing winds are due to the proximity of the MDAB to coastal and central regions and the blocking nature of the Sierra Nevada Mountains to the north; air masses pushed onshore in Southern California by differential heating are channeled through the MDAB. The MDAB is separated from the Southern California coastal and Central California valley regions by mountains (highest elevation is approximately 10,000 feet), whose passes form the main channels for these air masses. The Mojave Desert is bordered on the southwest by the San Bernardino Mountains, separated from the San Gabriel Mountains by the Cajon Pass (4,200 feet). A lesser pass lies between the San Bernardino Mountains and the Little San Bernardino Mountains in the Morongo Valley. The Palo Verde Valley portion of the Mojave Desert lies in the low desert, at the eastern end of a series of valleys (notably the Coachella Valley), whose primary channel is the San Gorgonio Pass (2,300 feet) between the San Bernardino and San Jacinto Mountains.

During the summer, the MDAB is generally influenced by a Pacific subtropical high cell that sits off the coast, inhibiting cloud formation and encouraging daytime solar heating. The MDAB is rarely influenced by cold air masses moving south from Canada and Alaska, as these frontal systems are weak and diffuse by the time they reach the desert. Most desert moisture arrives from infrequent warm, moist, and unstable air masses from the south. The MDAB averages between three and seven inches of precipitation per year (from 16 to 30 days with at least 0.01 inch of precipitation). The MDAB is classified as a dry-hot desert climate, with portions classified as dry-very hot desert, to indicate that at least three months have maximum average temperatures over 100.4° F.

Snow is common above 5,000 feet in elevation, resulting in moderate snowpack and limited spring runoff. Below 5,000 feet, any precipitation normally occurs as rainfall. Pacific storm fronts normally move into the area from the west, driven by prevailing winds from the west and southwest. During

late summer, moist high-pressure systems from the Pacific collide with rising heated air from desert areas, resulting in brief, high-intensity thunderstorms that can cause high winds and localized flash flooding.

2.3 AIR POLLUTANTS

2.3.1 Criteria Pollutants

Air quality regulations were first promulgated with the Federal Clean Air Act (CAA) of 1970. Air quality is defined by ambient air concentrations of seven “criteria air pollutants,” which are a group of common air pollutants identified by the U.S. EPA to be of concern with respect to the health and welfare of the general public. Federal and State governments regulate criteria air pollutants by using ambient standards based on criteria regarding the health and/or environmental effects of each pollutant. The seven “criteria” air pollutants defined by the U.S. EPA are: (1) CO; (2) sulfur dioxide (SO_2); (3) nitrogen dioxide (NO_2); (4) O_3 ; (5) PM_{10} , (6), fine particulate matter less than 2.5 microns ($\text{PM}_{2.5}$), and (7) lead (Pb). Criteria pollutants are pollutants that are regulated through the development of human health based and/or environmentally based criteria for setting permissible levels. Criteria pollutants, their typical sources, and health effects are identified below (4).

TABLE 2-1: CRITERIA POLLUTANTS (1 OF 7)

Criteria Pollutant	Description	Sources	Health Effects
CO	CO is a colorless, odorless gas produced by the incomplete combustion of carbon-containing fuels, such as gasoline or wood. CO concentrations tend to be the highest during the winter morning, when little to no wind and surface-based inversions trap the pollutant at ground levels. Because CO is emitted directly from internal combustion engines, unlike O_3 , motor vehicles operating at slow speeds are the primary source of CO in the MDAB. The highest ambient CO concentrations are generally found near congested transportation corridors and intersections.	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.	Individuals with a deficient blood supply to the heart are the most susceptible to the adverse effects of CO exposure. The effects observed include earlier onset of chest pain with exercise, and electrocardiograph changes indicative of decreased oxygen (O_2) supply to the heart. Inhaled CO has no direct toxic effect on the lungs but exerts its effect on tissues by interfering with O_2 transport and competing with O_2 to combine with hemoglobin present in the blood to form carboxyhemoglobin (COHb). Hence, conditions with an increased demand for O_2 supply can be adversely affected by exposure to CO.

TABLE 2-1: CRITERIA POLLUTANTS (2 OF 7)

Criteria Pollutant	Description	Sources	Health Effects
CO (Continued)			Individuals most at risk include fetuses, patients with diseases involving heart and blood vessels, and patients with chronic hypoxemia (O_2 deficiency) as seen at high altitudes.
SO_2	<p>SO_2 is a colorless, extremely irritating gas or liquid. It enters the atmosphere as a pollutant mainly as a result of burning high sulfur-content fuel oils and coal and from chemical processes occurring at chemical plants and refineries. When SO_2 oxidizes in the atmosphere, it forms SO_4. Collectively, these pollutants are referred to as sulfur oxides (SO_x).</p>	<p>Coal or oil burning power plants and industries, refineries, diesel engines</p>	<p>A few minutes of exposure to low levels of SO_2 can result in airway constriction in some asthmatics, all of whom are sensitive to its effects. In asthmatics, increase in resistance to air flow, as well as reduction in breathing capacity leading to severe breathing difficulties, are observed after acute exposure to SO_2. In contrast, healthy individuals do not exhibit similar acute responses even after exposure to higher concentrations of SO_2.</p> <p>Animal studies suggest that despite SO_2 being a respiratory irritant, it does not cause substantial lung injury at ambient concentrations. However, very high levels of exposure can cause lung edema (fluid accumulation), lung tissue damage, and sloughing off of cells lining the respiratory tract.</p> <p>Some population-based studies indicate that the mortality and morbidity effects associated with fine particles show a similar association with ambient SO_2 levels.</p>

TABLE 2-1: CRITERIA POLLUTANTS (3 OF 7)

Criteria Pollutant	Description	Sources	Health Effects
SO ₂ (Continued)			In these studies, efforts to separate the effects of SO ₂ from those of fine particles have not been successful. It is not clear whether the two pollutants act synergistically, or one pollutant alone is the predominant factor.
NO ₂	<p>NO₂ is a key component of NO_x, which also includes nitric oxide (NO) and nitrous oxide (N₂O). NO_x compounds are primarily produced during combustion processes when nitrogen (N₂) reacts with oxygen (O₂). Both NO and NO₂ serve as precursors in the formation of O₃ and PM_{2.5}, making their monitoring crucial for air quality assessments.</p> <p>NO₂, being the more abundant form of NO_x in the atmosphere, has a relatively short lifespan of one to seven days, which enhances its significance as a major air pollutant. As a criteria air pollutant, NO₂ poses various health risks, including respiratory issues and increased vulnerability to infections. It also absorbs blue light, imparting a brownish-red hue to the atmosphere and contributing to reduced visibility and smog formation.</p> <p>Given that NO emissions largely convert to NO₂, the examination of NO_x emissions becomes essential when assessing potential air quality impacts.</p>	<p>Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.</p>	<p>Population-based studies suggest that an increase in acute respiratory illness, including infections and respiratory symptoms in children (not infants), is associated with long-term exposure to NO₂ at levels found in homes with gas stoves, which are higher than ambient levels found in Southern California. Increase in resistance to air flow and airway contraction is observed after short-term exposure to NO₂ in healthy subjects. Larger decreases in lung functions are observed in individuals with asthma or chronic obstructive pulmonary disease (e.g., chronic bronchitis, emphysema) than in healthy individuals, indicating a greater susceptibility of these sub-groups.</p> <p>In animals, exposure to levels of NO₂ considerably higher than ambient concentrations result in increased susceptibility to infections, possibly due to the observed changes in cells involved in maintaining immune functions.</p>

TABLE 2-1: CRITERIA POLLUTANTS (4 OF 7)

Criteria Pollutant	Description	Sources	Health Effects
NO ₂ (Continued)	The concentrations of NO ₂ are closely related to traffic density, often resulting in higher exposure levels for commuters in heavy traffic compared to what regional monitoring stations may indicate.		The severity of lung tissue damage associated with high levels of O ₃ exposure increases when animals are exposed to a combination of O ₃ and NO ₂ .
O ₃	O ₃ is a highly reactive and unstable gas that is formed when VOCs and NO _x , both byproducts of internal combustion engine exhaust, undergo slow photochemical reactions in the presence of sunlight. O ₃ concentrations are generally highest during the summer months when direct sunlight, light wind, and warm temperature conditions are favorable to the formation of this pollutant.	Formed when ROGs and NO _x react in the presence of sunlight. ROG sources include any source that burns fuels, (e.g., gasoline, natural gas, wood, oil) solvents, petroleum processing and storage and pesticides.	Individuals exercising outdoors, children, and people with preexisting lung disease, such as asthma and chronic pulmonary lung disease, are considered to be the most susceptible subgroups for O ₃ effects. Short-term exposure (lasting for a few hours) to O ₃ at levels typically observed in Southern California can result in breathing pattern changes, reduction of breathing capacity, increased susceptibility to infections, inflammation of the lung tissue, and some immunological changes. Elevated O ₃ levels are associated with increased school absences. In recent years, a correlation between elevated ambient O ₃ levels and increases in daily hospital admission rates, as well as mortality, has also been reported. An increased risk for asthma has been found in children who participate in multiple outdoor sports and reside in communities with high O ₃ levels.

TABLE 2-1: CRITERIA POLLUTANTS (5 OF 7)

Criteria Pollutant	Description	Sources	Health Effects
O ₃ (Continued)			O ₃ exposure under exercising conditions is known to increase the severity of the responses described above. Animal studies suggest that exposure to a combination of pollutants that includes O ₃ may be more toxic than exposure to O ₃ alone. Although lung volume and resistance changes observed after a single exposure diminish with repeated exposures, biochemical and cellular changes appear to persist, which can lead to subsequent lung structural changes.
Particulate Matter	<p>PM₁₀: A major air pollutant consisting of tiny solid or liquid particles of soot, dust, smoke, fumes, and aerosols. Particulate matter pollution is a major cause of reduced visibility (haze) which is caused by the scattering of light and consequently the significant reduction in air clarity. The size of the particles (10 microns or smaller, about 0.0004 inches or less) allows them to easily enter the lungs where they may be deposited, resulting in adverse health effects. Additionally, it should be noted that PM₁₀ is considered a criteria air pollutant.</p> <p>PM_{2.5}: A similar air pollutant to PM₁₀ consisting of tiny solid or liquid particles which are 2.5 microns or smaller (which is often referred to as fine particles).</p>	<p>Sources of PM₁₀ include road dust, windblown dust and construction. Also formed from other pollutants (acid rain, NO_x, SO_x, organics). Incomplete combustion of any fuel.</p> <p>PM_{2.5} comes from fuel combustion in motor vehicles, equipment, and industrial sources, residential and agricultural burning. Also formed from reaction of other pollutants (acid rain, NO_x, SO_x, organics).</p>	<p>A consistent correlation between elevated ambient fine particulate matter (PM₁₀ and PM_{2.5}) levels and an increase in mortality rates, respiratory infections, number and severity of asthma attacks and the number of hospital admissions has been observed in different parts of the U.S. and various areas around the world. In recent years, some studies have reported an association between long-term exposure to air pollution dominated by fine particles and increased mortality, reduction in lifespan, and an increased mortality from lung cancer.</p>

TABLE 2-1: CRITERIA POLLUTANTS (6 OF 7)

Criteria Pollutant	Description	Sources	Health Effects
Particulate Matter (Continued)	<p>These particles are formed in the atmosphere from primary gaseous emissions that include SO_4 formed from SO_2 release from power plants and industrial facilities and nitrates that are formed from NO_x release from power plants, automobiles, and other types of combustion sources. The chemical composition of fine particles highly depends on location, time of year, and weather conditions. $\text{PM}_{2.5}$ is a criteria air pollutant.</p>		<p>Daily fluctuations in $\text{PM}_{2.5}$ concentration levels have also been related to hospital admissions for acute respiratory conditions in children, to school and kindergarten absences, to a decrease in respiratory lung volumes in normal children, and to increased medication use in children and adults with asthma. Recent studies show lung function growth in children is reduced with long term exposure to particulate matter. The elderly, people with pre-existing respiratory or cardiovascular disease, and children appear to be more susceptible to the effects of high levels of PM_{10} and $\text{PM}_{2.5}$.</p>
Pb	<p>Pb is a heavy metal that is highly persistent in the environment and is considered a criteria pollutant. In the past, the primary source of Pb in the air was emissions from vehicles burning leaded gasoline. The major sources of Pb emissions are ore and metals processing, particularly Pb smelters, and piston-engine aircraft operating on leaded aviation gasoline. Other stationary sources include waste incinerators, utilities, and lead-acid battery manufacturers. It should be noted that the Project does not include operational activities such as metal processing or Pb acid battery manufacturing. As such, the Project is not anticipated to generate a quantifiable amount of Pb emissions.</p>	<p>Metal smelters, resource recovery, leaded gasoline, deterioration of Pb paint.</p>	<p>Fetuses, infants, and children are more sensitive than others to the adverse effects of Pb exposure. Exposure to low levels of Pb can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. In adults, increased Pb levels are associated with increased blood pressure.</p>

TABLE 2-1: CRITERIA POLLUTANTS (7 OF 7)

Criteria Pollutant	Description	Sources	Health Effects
Pb (Continued)			Pb poisoning can cause anemia, lethargy, seizures, and death; although it appears that there are no direct effects of Pb on the respiratory system. Pb can be stored in the bone from early age environmental exposure, and elevated blood Pb levels can occur due to breakdown of bone tissue during pregnancy, hyperthyroidism (increased secretion of hormones from the thyroid gland) and osteoporosis (breakdown of bony tissue). Fetuses and breast-fed babies can be exposed to higher levels of Pb because of previous environmental Pb exposure of their mothers.

2.3.2 Additional Pollutants

The MDAQMD's primary focus is to achieve the National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) for criteria pollutants. However, it also has a broader mandate to control emissions of air contaminants and safeguard public health. As a result, MDAQMD regulates additional pollutants beyond criteria pollutants, including reactive organic gases (ROGs), VOCs, and odors. Additional pollutants, their typical sources, and health effects are identified below (4).

TABLE 2-2: ADDITIONAL POLLUTANTS (1 OF 3)

Pollutant	Description	Sources	Health Effects
VOC	VOCs are hydrocarbon compounds (any compound containing various combinations of hydrogen and carbon atoms) that exist in the ambient air.	Organic chemicals are widely used as ingredients in household products. Paints, varnishes, and wax all contain organic	Breathing VOCs can irritate the eyes, nose, and throat, can cause difficulty breathing and nausea, and can damage the central nervous system as well as other organs. Some VOCs can cause cancer.

TABLE 2-2: ADDITIONAL POLLUTANTS (2 OF 3)

Pollutant	Description	Sources	Health Effects
VOC (Continued)	<p>VOCs contribute to the formation of smog through atmospheric photochemical reactions and/or may be toxic. Compounds of carbon (also known as organic compounds) have different levels of reactivity; that is, they do not react at the same speed or do not form O₃ to the same extent when exposed to photochemical processes. VOCs often have an odor, and some examples include gasoline, alcohol, and the solvents used in paints. Exceptions to the VOC designation include CO, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate. VOCs are a criteria pollutant since they are a precursor to O₃, which is a criteria pollutant. The terms VOC and ROG (see below) interchangeably.</p>	<p>solvents, as do many cleaning, disinfecting, cosmetic, degreasing and hobby products. Fuels are made up of organic chemicals. All of these products can release organic compounds while you are using them, and, to some degree, when they are stored.</p>	<p>Not all VOCs have all these health effects, though many have several.</p>
ROG	<p>Similar to VOC, ROGs are also precursors in forming O₃ and consist of compounds containing methane, ethane, propane, butane, and longer chain hydrocarbons, which are typically the result of some type of combustion/decomposition process. Smog is formed when ROG and NO_x react in the presence of sunlight. ROGs are a criteria pollutant since they are a precursor to O₃, which is a criteria pollutant. The terms ROG and VOC (see previous) interchangeably.</p>	<p>Sources similar to VOCs.</p>	<p>Health effects similar to VOCs.</p>

TABLE 2-2: ADDITIONAL POLLUTANTS (3 OF 3)

Pollutant	Description	Sources	Health Effects
Odor	Odor means the perception experienced by a person when one or more chemical substances in the air come into contact with the human olfactory nerves (5).	Odors can come from many sources including animals, human activities, industry, natures, and vehicles.	Offensive odors can potentially affect human health in several ways. First, odorant compounds can irritate the eye, nose, and throat, which can reduce respiratory volume. Second, studies have shown that the VOCs that cause odors can stimulate sensory nerves to cause neurochemical changes that might influence health, for instance, by compromising the immune system. Finally, unpleasant odors can trigger memories or attitudes linked to unpleasant odors, causing cognitive and emotional effects such as stress.

2.4 EXISTING AIR QUALITY

Existing air quality is measured at established MDAQMD air quality monitoring stations. Monitored air quality is evaluated in the context of ambient air quality standards. These standards are the levels of air quality that are considered safe, with an adequate margin of safety, to protect the public health and welfare. National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) currently in effect are shown in Table 2-3 (6).

The determination of whether a region's air quality is healthful or unhealthful is determined by comparing contaminant levels in ambient air samples to the state and federal standards. At the time of this AQIA, the most recent state and federal standards were updated by CARB on July 16, 2024, and are presented in Table 2-3. The air quality in a region is considered to be in attainment by the state if the measured ambient air pollutant levels for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, PM₁₀, and PM_{2.5} are not to be exceeded. All others are not to be equaled or exceeded. It should be noted that the three-year period is presented for informational purposes and is not the basis for how the State assigns attainment status. Attainment status for a pollutant means that the Air District meets the standards set by the U.S. EPA or the California EPA (CalEPA). Conversely, nonattainment means that an area has monitored air quality that does not meet the NAAQS or CAAQS standards. In order to improve air quality in nonattainment areas, a State Implementation Plan (SIP) is drafted. The SIP outlines the measures that the state will take to improve air quality. Once nonattainment areas meet the standards and additional redesignation requirements, the U.S. EPA will designate the area as a maintenance area (7).

TABLE 2-3: AMBIENT AIR QUALITY STANDARDS (1 OF 2)

Ambient Air Quality Standards									
Pollutant	Averaging Time	California Standards ¹		National Standards ²					
		Concentration ³	Method ⁴	Primary ^{3,5}	Secondary ^{3,6}	Method ⁷			
Ozone (O ₃) ⁸	1 Hour	0.09 ppm (180 µg/m ³)	Ultraviolet Photometry	—	Same as Primary Standard	Ultraviolet Photometry			
	8 Hour	0.070 ppm (137 µg/m ³)		0.070 ppm (137 µg/m ³)					
Respirable Particulate Matter (PM10) ⁹	24 Hour	50 µg/m ³	Gravimetric or Beta Attenuation	150 µg/m ³	Same as Primary Standard	Inertial Separation and Gravimetric Analysis			
	Annual Arithmetic Mean	20 µg/m ³		—					
Fine Particulate Matter (PM2.5) ⁹	24 Hour	—	Gravimetric or Beta Attenuation	35 µg/m ³	Same as Primary Standard	Inertial Separation and Gravimetric Analysis			
	Annual Arithmetic Mean	12 µg/m ³		9.0 µg/m ³	15.0 µg/m ³				
Carbon Monoxide (CO)	1 Hour	20 ppm (23 mg/m ³)	Non-Dispersive Infrared Photometry (NDIR)	35 ppm (40 mg/m ³)	—	Non-Dispersive Infrared Photometry (NDIR)			
	8 Hour	9.0 ppm (10 mg/m ³)		9 ppm (10 mg/m ³)	—				
	8 Hour (Lake Tahoe)	6 ppm (7 mg/m ³)		—	—				
Nitrogen Dioxide (NO ₂) ¹⁰	1 Hour	0.18 ppm (339 µg/m ³)	Gas Phase Chemiluminescence	100 ppb (188 µg/m ³)	—	Gas Phase Chemiluminescence			
	Annual Arithmetic Mean	0.030 ppm (57 µg/m ³)		53 ppb (100 µg/m ³)	Same as Primary Standard				
Sulfur Dioxide (SO ₂) ¹¹	1 Hour	0.25 ppm (655 µg/m ³)	Ultraviolet Fluorescence	75 ppb (196 µg/m ³)	—	Ultraviolet Fluorescence; Spectrophotometry (Pararosaniline Method)			
	3 Hour	—		—	0.5 ppm (1300 µg/m ³)				
	24 Hour	0.04 ppm (105 µg/m ³)		0.14 ppm (for certain areas) ¹¹	—				
	Annual Arithmetic Mean	—		0.030 ppm (for certain areas) ¹¹	—				
Lead ^{12,13}	30 Day Average	1.5 µg/m ³	Atomic Absorption	—	—	High Volume Sampler and Atomic Absorption			
	Calendar Quarter	—		1.5 µg/m ³ (for certain areas) ¹²	Same as Primary Standard				
	Rolling 3-Month Average	—		0.15 µg/m ³					
Visibility Reducing Particles ¹⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape	No National Standards					
Sulfates	24 Hour	25 µg/m ³	Ion Chromatography						
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m ³)	Ultraviolet Fluorescence						
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m ³)	Gas Chromatography						

See footnotes on next page ...

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (7/16/24)

TABLE 2-3: AMBIENT AIR QUALITY STANDARDS (2 OF 2)

1. California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1 and 24 hour), nitrogen dioxide, and particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24 hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above $150 \mu\text{g}/\text{m}^3$ is equal to or less than one. For PM2.5, the 24 hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
4. Any equivalent measurement method which can be shown to the satisfaction of the ARB to give equivalent results at or near the level of the air quality standard may be used.
5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
9. On February 7, 2024, the national annual PM2.5 primary standard was lowered from $12.0 \mu\text{g}/\text{m}^3$ to $9.0 \mu\text{g}/\text{m}^3$. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at $35 \mu\text{g}/\text{m}^3$, as was the annual secondary standard of $15.0 \mu\text{g}/\text{m}^3$. The existing 24-hour PM10 standards (primary and secondary) of $150 \mu\text{g}/\text{m}^3$ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
11. On June 2, 2010, a new 1-hour SO_2 standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO_2 national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved. Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.
12. The ARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard ($1.5 \mu\text{g}/\text{m}^3$ as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
14. In 1989, the ARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

2.5 REGIONAL AIR QUALITY

Air pollution contributes to a wide variety of adverse health effects. The EPA has established NAAQS for seven of the most common air pollutants: CO, Pb, O₃, PM₁₀, PM_{2.5}, NO₂, and SO₂ which are known as criteria pollutants. The MDAQMD monitors levels of various criteria pollutants at 35 permanent monitoring stations and 2 single-pollutant source Pb air monitoring sites throughout the air district (8). On January 25, 2024, CARB adopted the proposed 2023 amendments to the state and national area designations. See Table 2-4 for attainment designations for the MDAB (9). Appendix 2.1 provides geographic representation of the state and federal attainment status for applicable criteria pollutants within the MDAB.

TABLE 2-4: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE MDAB

Criteria Pollutant	State Designation	Federal Designation
O ₃ - 1-hour standard	Nonattainment	--
O ₃ - 8-hour standard	Nonattainment	Nonattainment
PM ₁₀	Nonattainment	Nonattainment
PM _{2.5}	Attainment	Unclassifiable/Attainment
CO	Attainment	Unclassifiable/Attainment
NO ₂	Attainment	Unclassifiable/Attainment
SO ₂	Attainment	Unclassifiable/Attainment
PB ¹	Attainment	Unclassifiable/Attainment

Note: See Appendix 2.1 for a detailed map of State/National Area Designations within the MDAB and SDAB

-- = The national 1-hour O₃ standard was revoked effective June 15, 2005.

2.6 LOCAL AIR QUALITY

Relative to the Project site, the nearest long-term air quality monitoring site for O₃, CO (for the 2021 year), NO₂, PM₁₀, and PM_{2.5} was obtained from the MDAQMD Victorville-Park Avenue, located approximately 7.28 miles southeast of the project site in Victorville. It should be noted that the data for CO was not available at MDAQMD Victorville-Park Avenue nor the nearest alternative monitoring stations.

The most recent three (3) years of data available is shown on Table 2-5 and identifies the number of days ambient air quality standards were exceeded for the study area, which is considered to be representative of the local air quality at the Project site. Data for O₃, CO, NO₂, PM₁₀, and PM_{2.5} was obtained using the CARB iADAM: Air Quality and Data Statistics and the Air Quality and Meteorological Information System (AQMS) (10) (11). Data for SO₂ has been omitted as attainment is regularly met and few monitoring stations measure SO₂ concentrations. It should be noted that the table below is provided for informational purposes.

TABLE 2-5: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2021-2023

Pollutant	Standard	Year		
		2021	2022	2023
O₃				
Maximum Federal 1-Hour Concentration (ppm)		0.112	0.100	0.097
Maximum Federal 8-Hour Concentration (ppm)		0.098	0.090	0.088
Number of Days Exceeding State 1-Hour Standard	> 0.09 ppm	8	3	2
Number of Days Exceeding State/Federal 8-Hour Standard	> 0.070 ppm	35	49	32
Number of Days Exceeding State 8-Hour Standard	> 0.075 ppm	18	23	13
CO				
Maximum Federal 1-Hour Concentration	> 35 ppm	1.515	N/A	N/A
Maximum Federal 8-Hour Concentration	> 20 ppm	0.4	0.5	0.8
NO₂				
Maximum Federal 1-Hour Concentration	> 0.100 ppm	0.057	0.054	0.060
Maximum State 1-Hour Concentration	> 0.180 ppm	0.056	0.053	0.060
Annual Federal Standard Design Value		13	13	11
Annual State Standard Design Value		12	12	12
Number of Days Exceeding Federal 1-Hour Standard	> 0.100 ppm	0	0	0
Number of Days Exceeding State 1-Hour Standard	> 0.18 ppm	0	0	0
PM₁₀				
Maximum Federal 24-Hour Concentration (µg/m ³)	> 150 µg/m ³	591.6	372.1	160.4
Annual Federal Arithmetic Mean (µg/m ³)		33.9	33.6	28.4
Number of Days Exceeding Federal 24-Hour Standard	> 150 µg/m ³	1	2	1
PM_{2.5}				
Maximum Federal 24-Hour Concentration (µg/m ³)	> 35 µg/m ³	87.1	24.6	25.6
Maximum State 24-Hour Concentration (µg/m ³)		87.1	24.6	25.6
Annual Federal Arithmetic Mean (µg/m ³)	>12 µg/m ³	10.2	8.9	7.9
Annual State Arithmetic Mean (µg/m ³)	>12 µg/m ³	10.3	9.0	7.9
Number of Samples Exceeding Federal 24-Hour Standard	> 35 µg/m ³	1	0	0

Source: CARB iADAM: Air Quality Data Statistics and AQMIS

ppm = Parts Per Million

µg/m³ – microgram per cubic meter

N/A = data not available

2.7 REGULATORY BACKGROUND

2.7.1 Federal Regulations

The EPA is responsible for setting and enforcing the NAAQS for O₃, CO, NO_x, SO₂, PM₁₀, and Pb (12). The EPA has jurisdiction over emissions sources that are under the authority of the federal government including aircraft, locomotives, and emissions sources outside state waters (Outer Continental Shelf). The EPA also establishes emission standards for vehicles sold in states other than California. Automobiles sold in California must meet the stricter emission requirements of CARB. The Federal Clean Air Act (CAA) was first enacted in 1955 and has been amended numerous times in

subsequent years (1963, 1965, 1967, 1970, 1977, and 1990). The CAA establishes the federal air quality standards, the NAAQS, and specifies future dates for achieving compliance (13). The CAA also mandates that states submit and implement SIPs for local areas not meeting these standards. These plans must include pollution control measures that demonstrate how the standards will be met.

The 1990 amendments to the CAA that identify specific emission reduction goals for areas not meeting the NAAQS require a demonstration of reasonable further progress toward attainment and incorporate additional sanctions for failure to attain or to meet interim milestones. The sections of the CAA most directly applicable to the development of the Project site include Title I (Non-Attainment Provisions) and Title II (Mobile Source Provisions) (14) (15). Title I provisions were established with the goal of attaining the NAAQS for the following criteria pollutants O₃, NO₂, SO₂, PM₁₀, CO, PM_{2.5}, and Pb. The NAAQS were amended in July 1997 to include an additional standard for O₃ and to adopt a NAAQS for PM_{2.5}. Table 2-4 (previously presented) provides the NAAQS within the MDAB. Mobile source emissions are regulated in accordance with Title II provisions. These provisions require the use of cleaner burning gasoline and other cleaner burning fuels such as methanol and natural gas. Automobile manufacturers are also required to reduce tailpipe emissions of hydrocarbons and NO_x. NO_x is a collective term that includes all forms of NO_x which are emitted as byproducts of the combustion process.

2.7.2 California Regulations

CARB

CARB, which became part of CalEPA in 1991, is responsible for ensuring implementation of the California Clean Air Act (AB 2595), responding to the federal CAA, and for regulating emissions from consumer products and motor vehicles. AB 2595 mandates achievement of the maximum degree of emissions reductions possible from vehicular and other mobile sources in order to attain the state ambient air quality standards by the earliest practical date. CARB established the CAAQS for all pollutants for which the federal government has NAAQS and, in addition, establishes standards for SO₄, visibility, hydrogen sulfide (H₂S), and vinyl chloride (C₂H₃Cl). However, at this time, H₂S and C₂H₃Cl are not measured at any monitoring stations in the MDAB because they are not considered to be a regional air quality problem. Generally, the CAAQS are more stringent than the NAAQS (16) (12). Local air quality management districts, such as the MDAQMD, regulate air emissions from stationary sources such as commercial and industrial facilities. All air pollution control districts have been formally designated as attainment or non-attainment for each CAAQS.

Serious non-attainment areas are required to prepare Air Quality Management Plans (AQMP) that include specified emission reduction strategies in an effort to meet clean air goals. These plans are required to include:

- Application of Best Available Retrofit Control Technology to existing sources;
- Developing control programs for area sources (e.g., architectural coatings and solvents) and indirect sources (e.g. motor vehicle use generated by residential and commercial development);
- A District permitting system designed to allow no net increase in emissions from any new or modified permitted sources of emissions;

- Implementing reasonably available transportation control measures and assuring a substantial reduction in growth rate of vehicle trips and miles traveled;
- Significant use of low emissions vehicles by fleet operators;
- Sufficient control strategies to achieve a 5% or more annual reduction in emissions or 15% or more in a period of three years for ROGs, NO_x, CO and PM₁₀. However, air basins may use an alternative emission reduction strategy that achieves a reduction of less than 5% per year under certain circumstances.

Title 24 Energy Efficiency Standards and California Green Building Standards

California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption.

The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on August 1, 2009, and is administered by the California Building Standards Commission.

The 2022 California Title 24 Energy Standards became effective on January 1, 2023, with updates for the 2025 standards set to take effect on January 1, 2026. As the Project is expected to be completed in 2028, it will need to comply with the Title 24 Energy Standards in effect at that time, which may include further updates beyond the 2025 version.

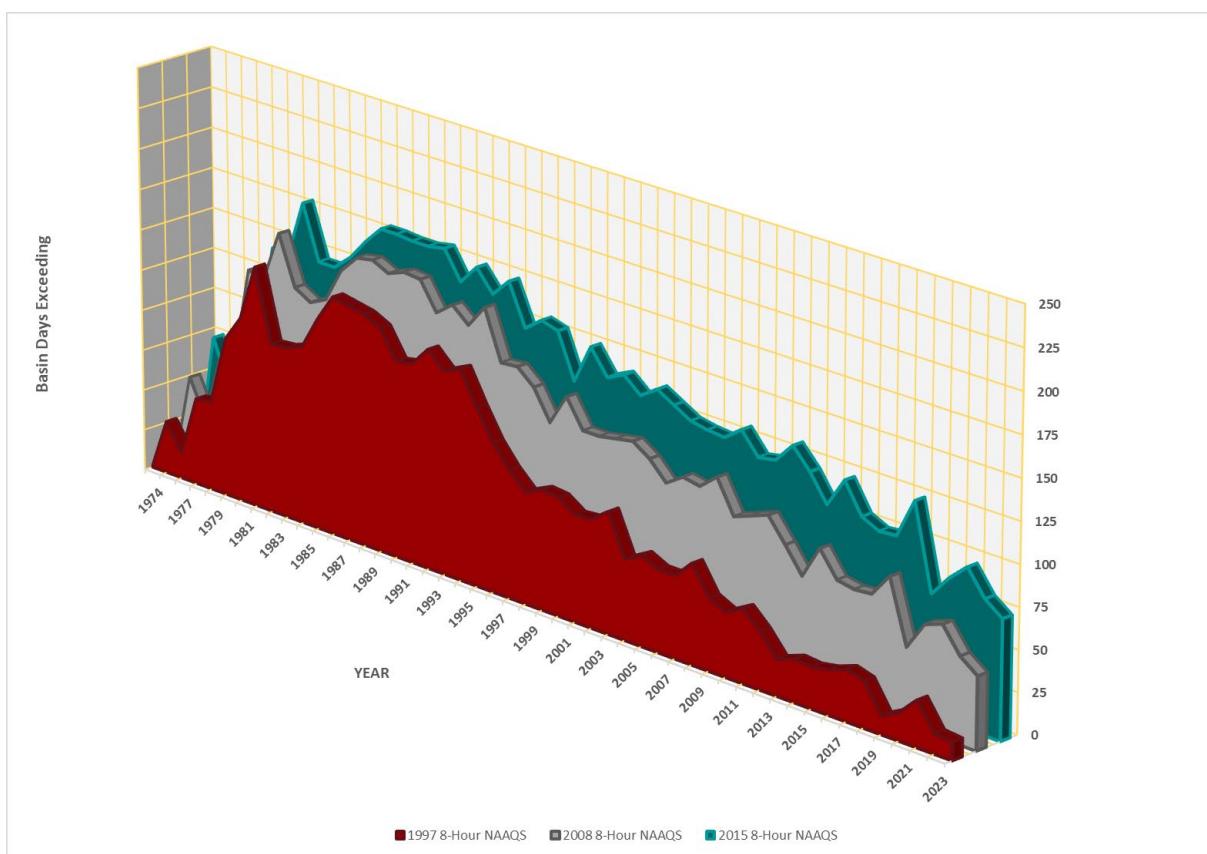
CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2025 California Green Building Code Standards that go into effect on January 1, 2026. The Project would be required to comply with the applicable standards in place at the time plan check submittals are made.

2.7.3 Regional Regulations

Air Quality Management Plan

Currently, the NAAQS and CAAQS are exceeded in most parts of the MDAB. The NAAQS, the Project region within the MDAB is in nonattainment for O₃ (8-hour) and PM₁₀. For the CAAQS, the Project region within the MDAB is in nonattainment for O₃ (1-hour and 8-hour) and PM₁₀. In response, the MDAQMD has adopted a series of AQMPs to meet the state and federal ambient air quality standards (17). AQMPs are updated regularly in order to more effectively reduce emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy. A detailed discussion on the AQMP and Project consistency with the AQMP is provided in Section 3.7.

2.8 REGIONAL AIR QUALITY IMPROVEMENTS

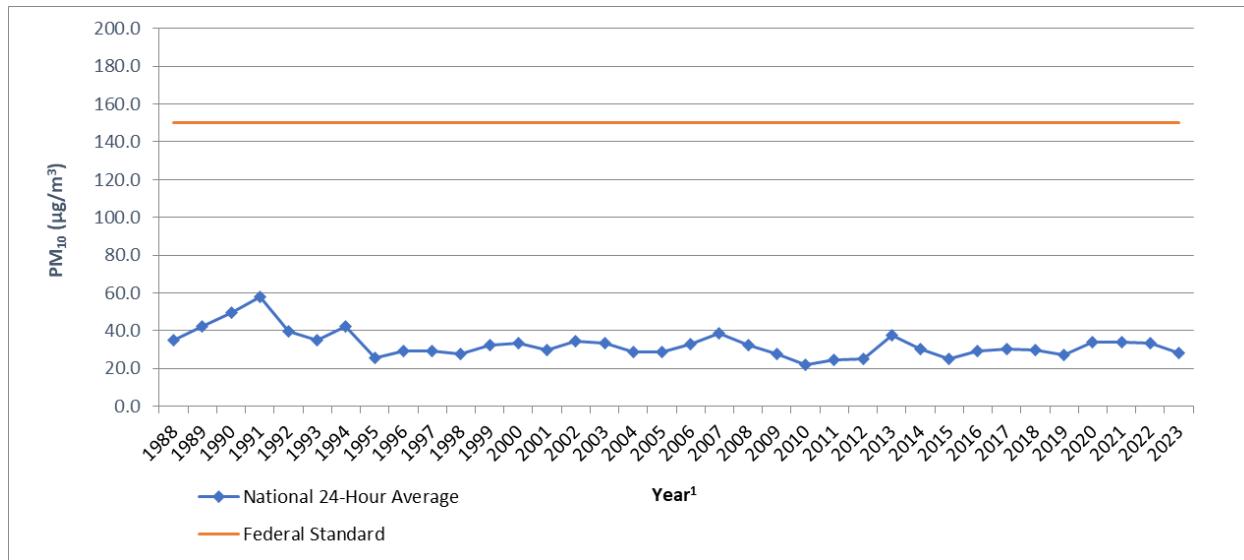

The Project is within the jurisdiction of the MDAQMD and is located in the Mojave Desert Air Basin (MDAB). MDAQMD rule development has resulted in improvement in air quality for the MDAB. Nearly all control programs developed through the early 2000s relied on (i) the development and application of cleaner technology; (ii) add-on emission controls, and (iii) uniform CEQA review

throughout the MDAB. Industrial emission sources have been significantly reduced by this approach and vehicular emissions have been reduced by technologies implemented at the state level by CARB.

The single threshold of significance used to assess Project direct and cumulative impacts has in fact “worked” as evidenced by the track record of the air quality in the MDAB improving over the course of the past decades.

Emissions of O₃, NO_x, and VOCs have been decreasing in the MDAB since 1975 (18). These decreases result primarily from motor vehicle controls and reductions in evaporative emissions. Although vehicle miles traveled (VMT) in the MDAB continue to increase, NO_x and VOC levels are decreasing because of the mandated controls on motor vehicles and the replacement of older polluting vehicles with lower-emitting vehicles. NO_x emissions from electric utilities have also decreased due to use of cleaner fuels and renewable energy. O₃ contour maps show that the number of days exceeding the 8-hour NAAQS has generally decreased between 1975 and 2023. For 2023, there was an overall increase in exceedance days compared with the 1973 period. However, as shown on Table 2-6, O₃ levels have increased in the past three years due to higher temperatures and stagnant weather conditions. Notwithstanding, O₃ levels in the MDAB have generally decreased over the last 30 years (19).

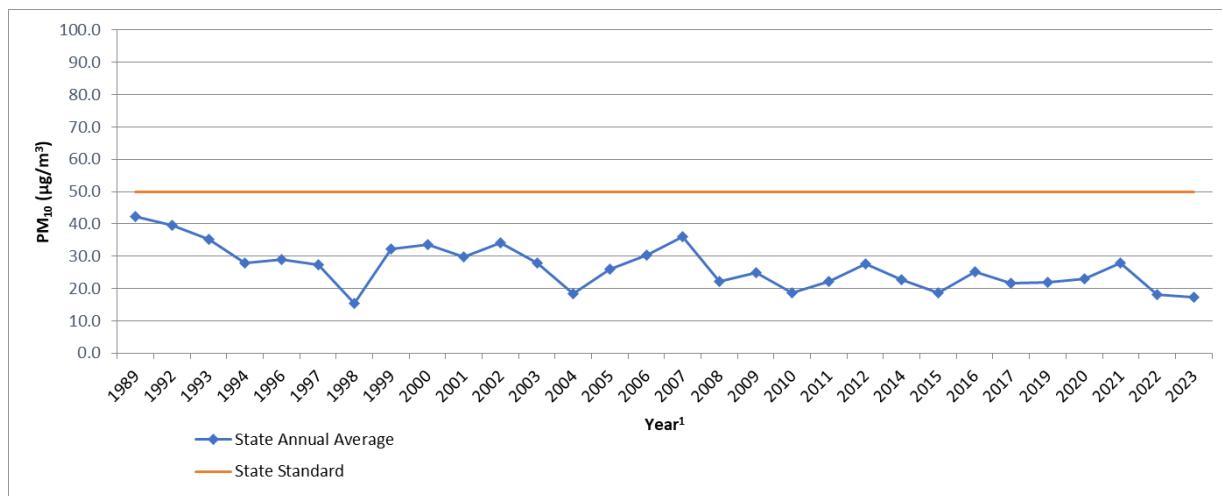
TABLE 2-6: MDAB O₃ TREND



Source: 2024 CARB, iADAM: Top Four Summary: PM10 24-Hour Averages (1973-2023)

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of “0” have also been omitted.

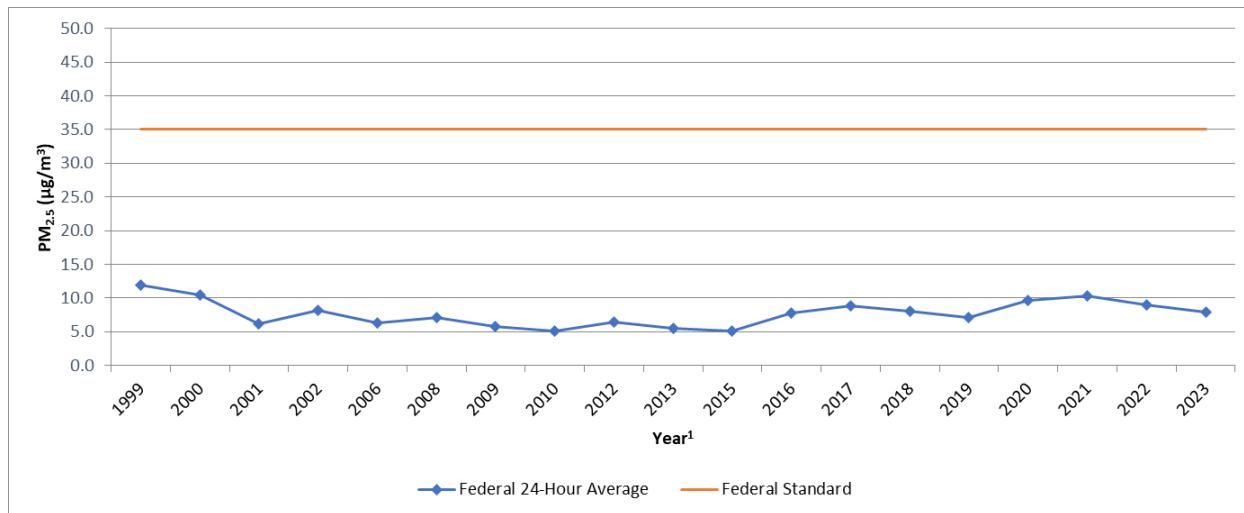
The most recent PM₁₀ statistics show a slight improvement as illustrated in Tables 2-7 and 2-8. During the period for which data is available, the 24-hour national annual average concentration for PM₁₀ decreased by approximately 18%, from 34.7 microgram per cubic meter ($\mu\text{g}/\text{m}^3$) in 1988 to 28.4 $\mu\text{g}/\text{m}^3$ in 2023 (19). The 24-hour state annual average concentration for PM₁₀, have decreased by approximately 59%, from 42.4 $\mu\text{g}/\text{m}^3$ in 1989 to 17.3 $\mu\text{g}/\text{m}^3$ in 2023 (19).


TABLE 2-7: MDAB AVERAGE 24-HOUR CONCENTRATION PM10 TREND (BASED ON FEDERAL STANDARD)¹

Source: 2024 CARB, iADAM: Top Four Summary: PM10 24-Hour Averages (1988-2023)

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

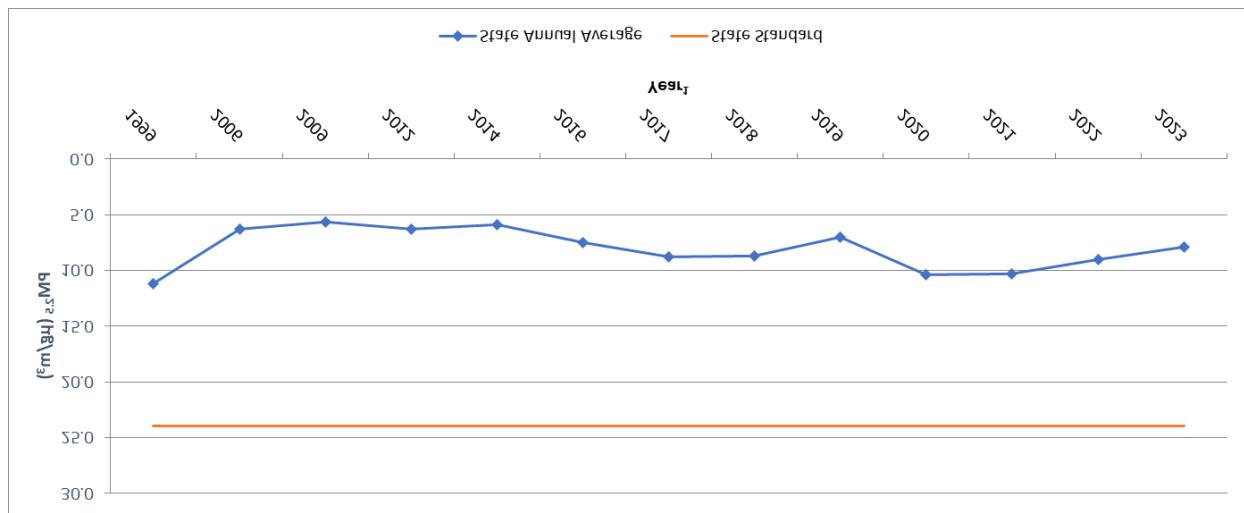
TABLE 2-8: MDAB ANNUAL AVERAGE CONCENTRATION PM10 TREND (BASED ON STATE STANDARD)¹



Source: 2024 CARB, iADAM: Top Four Summary: PM10 24-Hour Averages (1988-2023)

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

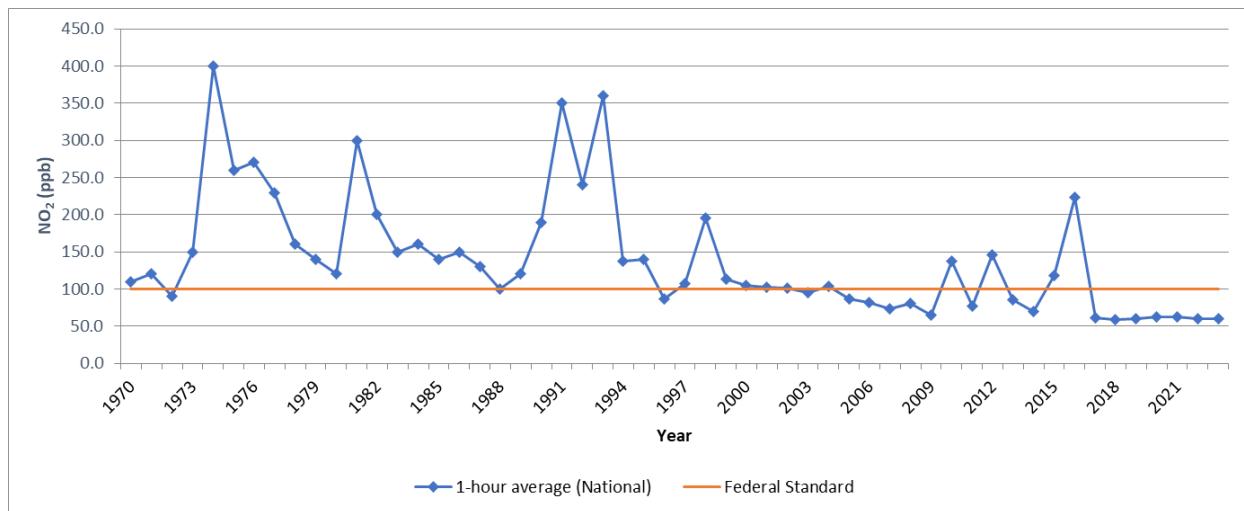
Tables 2-9 and 2-10 shows the most recent 24-hour average PM_{2.5} concentrations in the MDAB from 1999 through 2023. Overall, the national and state annual average concentrations have decreased by almost 34% and 29% respectively (19).


TABLE 2-9: MDAB 24-HOUR AVERAGE CONCENTRATION PM_{2.5} TREND (BASED ON FEDERAL STANDARD)¹

Source: 2024 CARB, iADAM: Top Four Summary: PM_{2.5} 24-Hour Averages (1989-2023)

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

TABLE 2-10: MDAB ANNUAL AVERAGE CONCENTRATION PM_{2.5} TREND (BASED ON STATE STANDARD)¹



Source: 2024 CARB, iADAM: Top Four Summary: PM_{2.5} 24-Hour Averages (1999-2023)

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

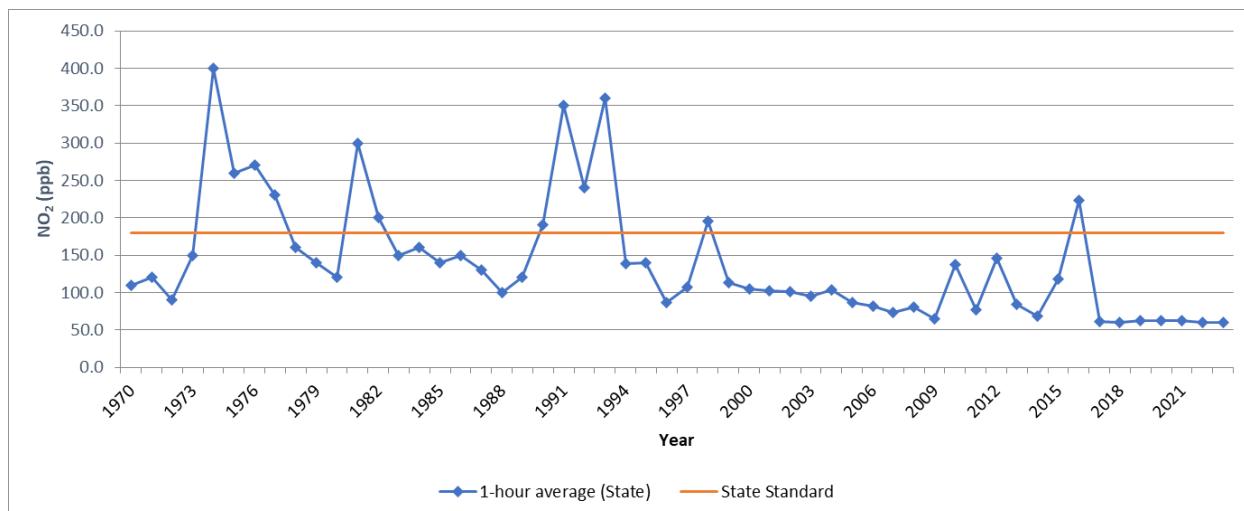

The most recent NO₂ data for the MDAB is shown in Tables 2-11 and 2-12 (19). Over the last 50 years, NO₂ values have decreased significantly; the peak 1-hour national and state averages for 2023 is approximately 45% lower than what it was during 1970. NO₂ is formed from NO_x emissions, which also contribute to O₃. As a result, the majority of the future emission control measures would be implemented as part of the overall O₃ control strategy. Many of these control measures would target mobile sources, which account for more than three-quarters of California's NO_x emissions.

TABLE 2-11: MDAB 1-HOUR AVERAGE CONCENTRATION NO₂ TREND (BASED ON FEDERAL STANDARD)

Source: 2024 CARB, iADAM: Top Four Summary: CO 1-Hour Averages (1970-2023)

TABLE 2-12: MDAB 1-HOUR AVERAGE CONCENTRATION NO₂ TREND (BASED ON STATE STANDARD)

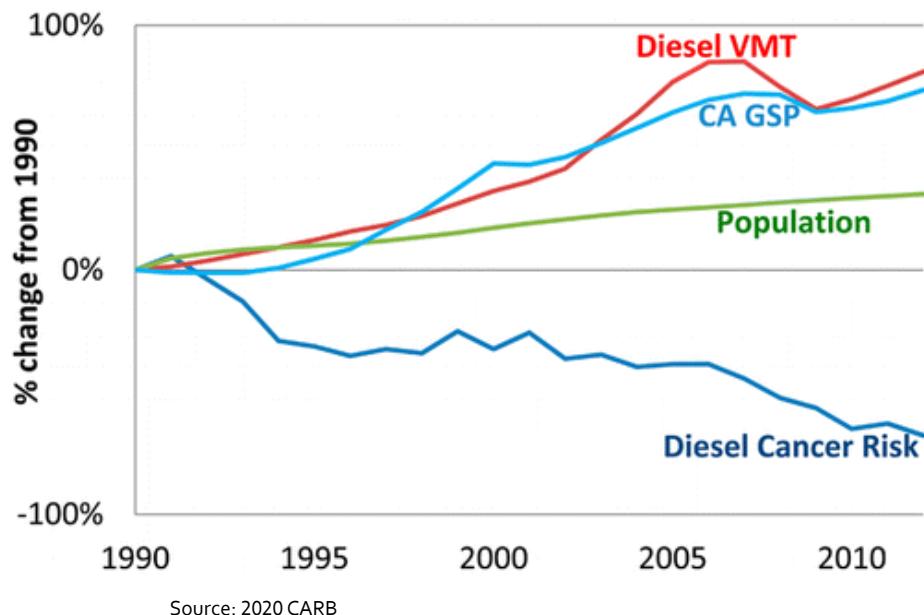
Source: 2024 CARB, iADAM: Top Four Summary: CO 1-Hour Averages (1970-2023)

2.7.1 Toxic Air Contaminants (TAC) Trends

In 1984, as a result of public concern for exposure to airborne carcinogens, CARB adopted regulations to reduce the amount of TAC emissions resulting from mobile and area sources, such as cars, trucks, stationary sources, and consumer products. According to the *Ambient and Emission Trends of Toxic Air Contaminants in California* journal article (20) which was prepared for CARB, results show that between 1990-2012, ambient concentration and emission trends for the seven TACs responsible for most of the known cancer risk associated with airborne exposure in California have declined significantly (between 1990 and 2012). The seven TACs studied include those that are derived from mobile sources: diesel particulate matter (DPM), benzene (C₆H₆), and 1,3-butadiene (C₄H₆); those that are derived from stationary sources: perchloroethylene (C₂Cl₄) and hexavalent chromium (Cr(VI)); and those derived from photochemical reactions of emitted VOCs: formaldehyde (CH₂O) and acetaldehyde (C₂H₄O)¹. The decline in ambient concentration and emission trends of these TACs are a result of various regulations CARB has implemented to address cancer risk.

Mobile Source TACs

CARB introduced two programs that aimed at reducing mobile emissions for light and medium duty vehicles through vehicle emissions controls and cleaner fuel. In California, light-duty vehicles sold after 1996 are equipped with California's second-generation On-Board Diagnostic (OBD-II) system. The OBD-II system monitors virtually every component that can affect the emission performance of the vehicle to ensure that the vehicle remains as clean as possible over its entire life and assists repair technicians in diagnosing and fixing problems with the computerized engine controls. If a problem is detected, the OBD-II system illuminates a warning lamp on the vehicle instrument panel to alert the driver. This warning lamp typically contains the phrase "Check Engine" or "Service Engine Soon." The system would also store important information about the detected malfunction so that a repair technician can accurately find and fix the problem. CARB has recently developed similar OBD requirements for heavy-duty vehicles over 14,000 pounds (lbs). CARB's phase II Reformulated Gasoline Regulation (RFG-2), adopted in 1996, also led to a reduction of mobile source emissions. Through such regulations, benzene levels declined 88% from 1990-2012. 1,3-Butadiene concentrations also declined 85% from 1990-2012 as a result of the use of reformulated gasoline and motor vehicle regulations (20).


In 2000, CARB's Diesel Risk Reduction Plan (DRRP) recommended the replacement and retrofit of diesel-fueled engines and the use of ultra-low-sulfur (<15 ppm) diesel fuel. As a result of these measures, DPM concentrations have declined 68% since 2000, even though the state's population increased 31% and the amount of diesel vehicles miles traveled increased 81%, as shown on Exhibit 2-A. With the implementation of these diesel-related control regulations, CARB expects a DPM decline of 71% for 2000-2020.

¹ It should be noted that ambient DPM concentrations are not measured directly. Rather, a surrogate method using the coefficient of haze (COH) and elemental carbon (EC) is used to estimate DPM concentrations.

EXHIBIT 2-A: DPM AND DIESEL VEHICLE MILES TREND

California Population, Gross State Product (GSP),
Diesel Cancer Risk, Diesel Vehicle-Miles-Traveled (VMT)

Source: 2020 CARB

Diesel Regulations

CARB and the Ports of Los Angeles and Long Beach (POLA and POLB) have adopted several iterations of regulations for diesel trucks that are aimed at reducing DPM. More specifically, CARB Drayage Truck Regulation (21), CARB statewide On-road Truck and Bus Regulation (22), and the Ports of Los Angeles and Long Beach Clean Truck Program (CTP) require accelerated implementation of “clean trucks” into the statewide truck fleet (23). In other words, older more polluting trucks would be replaced with newer, cleaner trucks as a function of these regulatory requirements.

Moreover, the average statewide DPM emissions for Heavy Duty Trucks (HDT), in terms of grams of DPM generated per mile traveled, would dramatically be reduced due to the aforementioned regulatory requirements. Diesel emissions identified in this analysis would therefore overstate future DPM emissions since not all the regulatory requirements are reflected in the modeling.

3 PROJECT AIR QUALITY IMPACT

3.1 INTRODUCTION

The Project has been evaluated to determine if it will violate an air quality standard or contribute to an existing or projected air quality violation. Additionally, the Project has been evaluated to determine if it will result in a cumulatively considerable net increase of a criteria pollutant for which the MDAB is non-attainment under an applicable federal or state ambient air quality standard. The significance of these potential impacts is described in the following section.

3.2 STANDARDS OF SIGNIFICANCE

The criteria used to determine the significance of potential Project-related air quality impacts are taken from the *CEQA Guidelines* (14 CCR §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to air quality if it would (1):

- Conflict with or obstruct implementation of the applicable air quality plan.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in non-attainment under an applicable federal or state ambient air quality standard.
- Expose sensitive receptors to substantial pollutant concentrations.
- Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

The MDAQMD has developed regional significance thresholds for regulated pollutants, shown below in Table 3-1. The MDAQMD's *CEQA and Federal Conformity Guidelines* indicate that any projects in the MDAB with daily regional emissions that exceed any of the indicated thresholds should be considered as having an individually and cumulatively significant air quality impact (24).

TABLE 3-1: REGIONAL EMISSIONS SIGNIFICANCE THRESHOLDS

Pollutant	Threshold
CO	548 lbs/day
NO _x	137 lbs/day
VOC	137 lbs/day
SO _x	137 lbs/day
PM ₁₀	82 lbs/day
PM _{2.5}	65 lbs/day

lbs/day = Pounds Per Day

3.3 MODELS EMPLOYED TO ANALYZE AIR QUALITY

3.3.1 CalEEMod

Land uses such as the Project affect air quality through construction-source and operational-source emissions. The California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including MDAQMD, released CalEEMod 2022 in May 2022. CalEEMod periodically releases updates, as such the latest version available at the time of this report has been utilized in this analysis. The purpose of this model is to calculate construction-source and operational-source criteria pollutant (VOCs, NO_x, SO_x, CO, PM₁₀, and PM_{2.5}) and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation measures (25). Accordingly, the latest version of CalEEMod has been used for this Project to determine construction and operational air quality emissions. Output from the model runs for both construction and operational activity are provided in Appendices 3.1 through Appendix 3.6.

3.4 CONSTRUCTION EMISSIONS

3.4.1 Construction Activities

Construction activities associated with the Project would result in emissions of VOCs, NO_x, SO_x, CO, PM₁₀, and PM_{2.5}. Construction-related emissions are expected from the following construction activities:

- Demolition
- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating

Demolition Activities

The site is currently developed with existing uses/structures which total approximately, 1,040 square feet. Demolished material associated with demolition will be hauled off-site.

Grading Activities

Dust is typically a major concern during grading activities. Because such emissions are not amenable to collection and discharge through a controlled source, they are called “fugitive emissions.” Fugitive dust emissions rates vary as a function of many parameters (soil silt, soil moisture, wind speed, area disturbed, number of vehicles, depth of disturbance or excavation, etc.). CalEEMod was utilized to calculate fugitive dust emissions resulting from this phase of activity. Based on Project-specific grading plans, site development is anticipated to require approximately 738,987 cubic yards of cut and 744,043 cubic yards of fill, resulting in a net import of approximately 5,056 cubic yards of material.

Off-Site Utility and Infrastructure Improvements

In addition, to support the Project development, there may be paving for off-site improvements associated with roadway construction and utility installation for the Project. It is expected that the off-site construction activities would not take place at one location for the entire duration of construction. Impacts associated with these activities are not expected to exceed the emissions identified for Project-related construction activities since the off-site construction areas would have physical constraints on the amount of daily activity that could occur. The physical constraints would limit the amount of construction equipment that could be used, and any off-site and utility infrastructure construction would not use equipment totals that would exceed the equipment totals in Table 3-5. As such, no impacts beyond what has already been identified in this report are expected to occur.

3.4.2 Construction Duration

For purposes of analysis, construction will begin December 2026 and would last through November 2028. The construction schedule utilized in the analysis, shown in Table 3-2, represents a “conservative” analysis scenario should construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent.² The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines* (26).

3.4.3 Construction Equipment

Site specific construction fleet may vary due to specific project needs at the time of construction. The associated construction equipment was generally based on CalEEMod defaults. Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 3-3 is assumed to operate up to a total of eight (8) hours per day, or more than two-thirds of the period during which construction activities are allowed.

TABLE 3-2: CONSTRUCTION DURATION

Construction Activity	Start Date	End Date	Days
Demolition	12/1/2026	12/7/2026	5
Site Preparation	12/8/2026	1/13/2027	27
Grading	1/14/2027	3/17/2027	45
Building Construction	3/18/2027	9/13/2028	390
Paving	9/14/2028	11/22/2028	50
Architectural Coating	9/14/2028	11/22/2028	50

² As shown in the CalEEMod User’s Guide Version 2022, Appendix G “Table G-11. Statewide Average Annual Offload Equipment Emission Factors ”as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements.

TABLE 3-3: CONSTRUCTION EQUIPMENT ASSUMPTIONS

Construction Activity	Equipment	Quantity	Hours
Demolition	Excavators	1	8
Site Preparation	Rubber Tired Dozers	2	8
	Crawler Tractors	3	8
Grading	Excavators	1	8
	Graders	2	8
	Rubber Tired Dozers	2	8
	Scrapers	6	8
	Crawler Tractors	3	8
Building Construction	Cranes	1	8
	Forklifts	5	8
	Generator Sets	2	8
	Tractors/Loaders/Backhoes	5	8
	Welders	2	8
Paving	Pavers	3	8
	Paving Equipment	3	8
	Rollers	3	8
Architectural Coating	Air Compressors	2	8

3.4.4 On-Road Trips

Construction generates on-road vehicle emissions from vehicle usage for workers, vendors, and haul trucks commuting to and from the site. The number of worker, vendor, and hauling trips per phase is presented below in Table 3-4. Worker and hauling trips are based on CalEEMod defaults. It should be noted that for vendor trips specifically, CalEEMod only assigns vendor trips to the Building Construction phase. In practice, vendor trips are expected to occur throughout various phases of construction, not just during Building Construction. To more accurately reflect this, the vendor trips initially allocated to the Building Construction phase were redistributed across other non-overlapping construction activities. This reallocation was done proportionally, based on the duration of each phase, ensuring that vendor trips are appropriately spread across all applicable construction phases that do not occur simultaneously.

TABLE 3-4: CONSTRUCTION TRIP ASSUMPTIONS

Construction Activity	Worker Trips Per Day	Vendor Trips Per Day	Hauling Trips Per Day
Demolition	3	2	2
Site Preparation	13	12	0
Grading	35	20	14
Building Construction	580	170	0
Paving	23	11	0
Architectural Coating	116	11	0

3.4.5 Construction Emissions Summary

Impacts Without Mitigation

CalEEMod calculates maximum daily emissions for summer and winter periods. As such, the estimated maximum daily construction emissions without mitigation for both summer and winter periods are summarized in Table 3-5. Detailed unmitigated construction model outputs are presented in Appendix 3.1. Under the assumed scenarios, emissions resulting from the Project construction will exceed criteria pollutant thresholds established by the MDAQMD for VOC emissions.

TABLE 3-5: CONSTRUCTION EMISSIONS SUMMARY – WITHOUT MITIGATION

Year	Emissions (lbs/day)					
	ROG	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Summer						
2027	4.50	22.87	65.59	0.08	9.65	2.75
2028	148.02	21.75	62.61	0.08	9.59	2.70
Winter						
2026	2.71	24.33	22.30	0.04	5.32	3.00
2027	7.51	64.71	64.24	0.16	9.65	4.81
2028	147.95	22.30	49.94	0.08	9.59	2.70
Maximum Daily Emissions	148.02	64.71	65.59	0.16	9.65	4.81
MDAQMD Regional Thresholds	137	137	548	137	82	65
Threshold Exceeded?	YES	NO	NO	NO	NO	NO

Source: CalEEMod construction-source (unmitigated) emissions are presented in Appendix 3.1.

Applicable Mitigation Measures

The Project construction-source emissions have the potential to exceed MDAQMD regional threshold for VOC emissions prior to mitigation. With implementation of mitigation measure MM AQ-1, Project VOC emissions would be reduced to less than significant levels. As such, Project construction-source VOC emission impacts are therefore considered less than significant.

MM AQ-1

During construction, the construction contractor shall, at a minimum, use "Super-Compliant" low VOC paints which have been reformulated to exceed the regulatory VOC limits put forth by MDAQMD's Rule 1113. Super-Compliant low VOC paints shall be no more than 10 grams per liter of VOC or less for all interior and exterior building coatings. Alternatively, the applicant may utilize a tilt-up concrete building that does not require the use of architectural coatings. This mitigation measure shall be noted on construction drawings verified by the Town of Apple Valley prior to issuance of any construction permits and during coating activities.

Impacts With Mitigation

The estimated maximum daily construction emissions, with mitigation, are summarized in Table 3-6, with detailed modeling outputs provided in Appendix 3.2. Under the assumed construction

scenarios, emissions of VOC associated with Project construction, primarily generated by paints used during Architectural Coating activities, initially exceeded the thresholds established by the MDAQMD. However, with implementation of MM AQ-1, VOC emissions are reduced below the applicable threshold. As a result, the Project would no longer exceed the criteria pollutant thresholds for regional construction emissions and would therefore result in a less than significant impact.

TABLE 3-6: CONSTRUCTION EMISSIONS SUMMARY – WITH MITIGATION

Year	Emissions (lbs/day)					
	ROG	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Summer						
2027	4.50	22.87	65.59	0.08	9.65	2.75
2028	45.54	21.75	62.61	0.08	9.59	2.70
Winter						
2026	2.71	24.33	22.30	0.04	5.32	3.00
2027	7.51	64.71	64.24	0.16	9.65	4.81
2028	45.48	22.30	49.94	0.08	9.59	2.70
Maximum Daily Emissions	45.54	64.71	65.59	0.16	9.65	4.81
MDAQMD Regional Thresholds	137	137	548	137	82	65
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

Source: CalEEMod construction-source (mitigated) emissions are presented in Appendix 3.2.

3.5 OPERATIONAL EMISSIONS

Operational activities associated with the Project would result in emissions of VOCs, NO_x, SO_x, CO, PM₁₀, and PM_{2.5}. Operational emissions are expected from the following primary sources:

- Mobile Source Emissions;
- Area Source Emissions;
- Energy Source Emissions;
- Stationary Source Emissions;
- On-site Cargo Handling Equipment Emissions; and
- TRU Source Emissions

3.5.1 Mobile Source Emissions

The Project related operational air quality emissions derived primarily from vehicle trips generated by the Project. Trip characteristics available from the *Apple Valley 84 Traffic Analysis* were utilized in this analysis (27). Trip lengths for passenger vehicles were obtained from the San Bernardino Traffic Analysis Model (SBTAM) and trip lengths for trucks were obtained from the StreetLight™ Data available in the *Apple Valley 84 Vehicle Miles Traveled Analysis* (28).

Passenger Vehicles

To determine emissions from passenger vehicles for the proposed industrial uses, the analysis incorporated a trip length of 15.40 miles for 2 Light-Duty-Auto vehicles (LDA), Light-Duty-Trucks

(LDT1³ & LDT2⁴), Medium-Duty-Vehicles (MDV), and Motorcycles (MCY) vehicles taken from the San Bernardino Traffic Analysis Model (SBTAM) data available in the *Apple Valley 84 Vehicle Miles Traveled Analysis* with an assumption of 100% primary trips.

As mentioned previously, this analysis assumes that passenger cars include Light-Duty-Auto vehicles (LDA), Light-Duty-Trucks (LDT1⁵ & LDT2⁶), Medium-Duty-Vehicles (MDV), and Motorcycles (MCY) vehicle types. To account for emissions generated by passenger cars, the following fleet mix was utilized in this analysis:

TABLE 3-7: PASSENGER CAR FLEET MIX

Land Use	% Vehicle Type				
	LDA	LDT1	LDT2	MDV	MCY
General Light Industrial					
High-Cube Cold Storage	52.41	4.39	23.70	16.75	2.75
High-Cube Fulfillment (Non-Sort)					

Note: The Project-specific passenger car fleet mix used in this analysis is based on a proportional split utilizing the default CalEEMod percentages assigned to LDA, LDT1, LDT2, MDV, and MCY vehicle types.

Trucks

To determine emissions from trucks for the proposed industrial uses, the analysis incorporated a trip length of 62.10 miles for 2-axle (LHDT1, LHDT2), 3-axle (MHDT) trucks and 4+-axle (HHDT) trucks taken from the StreetLight™ data available in the *Apple Valley 84 Vehicle Miles Traveled Analysis* with an assumption of 100% primary trips. This trip length assumption is higher than the CalEEMod defaults for trucks.

In order to be consistent with the *Apple Valley 84 Traffic Analysis*, trucks are broken down by truck type. The truck fleet mix is estimated by rationing the trip rates for each truck type based on information provided in the *Apple Valley 84 Traffic Analysis*. Heavy trucks are broken down by truck type (or axle type) and are categorized as either Light-Heavy-Duty Trucks (LHDT1⁷ & LHDT2⁸)/2-axle, Medium-Heavy-Duty Trucks (MHDT)/3-axle, and Heavy-Heavy-Duty Trucks (HHDT)/4+-axle. To account for emissions generated by trucks, the following fleet mix was utilized in this analysis:

³ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

⁴ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

⁵ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

⁶ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

⁷ Vehicles under the LHDT1 category have a GVWR of 8,501 to 10,000 lbs.

⁸ Vehicles under the LHDT2 category have a GVWR of 10,001 to 14,000 lbs.

TABLE 3-8: TRUCK FLEET MIX

Land Use	% Vehicle Type			
	LHDT1	LHDT2	MHDT	HHDT
General Light Industrial	13.05	3.62	22.22	61.11
High-Cube Cold Storage	27.36	7.58	10.84	54.22
High-Cube Fulfillment (Non-Sort)	13.20	3.66	20.79	62.36

Note: Project-specific truck fleet mix is based on the number of trips generated by each truck type (LHDT₁, LHDT₂, MHDT, and HHDT) relative to the total number of truck trips.

Fugitive Dust Related to Vehicular Travel

Vehicles traveling on paved roads would be a source of fugitive emissions due to the generation of road dust inclusive of brake and tire wear particulates. The emissions estimate for travel on paved roads was calculated using CalEEMod.

3.5.2 Area Source Emissions

Architectural Coatings

Over a period of time the building that is part of this Project would require maintenance and would therefore produce emissions resulting from the evaporation of solvents contained in paints, varnishes, primers, and other surface coatings. The emissions associated with architectural coatings were calculated using CalEEMod.

Consumer Products

Consumer products include, but are not limited to, detergents, cleaning compounds, polishes, personal care products, and lawn and garden products. Many of these products contain organic compounds which when released in the atmosphere can react to form O₃ and other photochemically reactive pollutants. The emissions associated with the use of consumer products were calculated based on defaults provided within CalEEMod.

Landscape Maintenance Equipment

Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shredders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of the Project. It should be noted that on October 9, 2021, Governor Gavin Newsom signed AB 1346. The bill aims to ban the sale of new gasoline-powered equipment under 25 gross HP (known as small off-road engines [SOREs]) by January 1, 2024, which is now in effect. However, for purposes of analysis, the emissions associated with landscape maintenance equipment were calculated based on assumptions provided in CalEEMod, and do not incorporate the emissions reductions that would be realized from implementation of AB 1346.

3.5.3 Energy Source Emissions

Combustion Emissions Associated with Electricity and Natural Gas

Electricity and natural gas are used in almost every project. Criteria pollutant emissions are emitted through the generation of electricity. However, because electrical generating facilities for the Project area are located either outside the region (state) or offset through the use of pollution credits (RECLAIM) for generation within the MDAB, criteria pollutant emissions from offsite generation of electricity are excluded from the evaluation of significance. The site is not expected to utilize natural gas for the building envelope and therefore would not generate any emissions from direct energy consumption.

3.5.4 Stationary Source Emissions

The proposed Project was conservatively assumed to include installation of a 300 HP diesel-powered fire pump and a 700 HP diesel-powered emergency generator at each building. The fire pump and emergency generator were each estimated to operate for up to 1 hour per day, 1 day per week for up to 50 hours per year for maintenance and testing purposes. Emissions associated with the stationary diesel-powered fire pump and emergency generator were calculated using CalEEMod.

3.5.5 On-Site Cargo Handling Equipment Emissions

It is common for industrial buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. For this Project, on-site modeled operational equipment includes up to five (5) 175 hp, natural gas-powered cargo handling equipment – port tractor operating 4 hours a day⁹ for 365 days of the year.

3.5.6 TRU Emissions

In order to account for the possibility of refrigerated uses, trucks associated with the cold-storage land use are assumed to also have Transport Refrigeration Units (TRUs). For modeling purposes, 166 two-way truck trips with TRUs were modeled (e.g., all truck trips that would be associated with high-cube cold storage uses, as summarized in the *Apple Valley 84 Traffic Analysis*). TRUs are accounted for during on-site and off-site travel. The TRU calculations are based on the EMissions FACtor (EMFAC) Offroad Emissions model, developed by the CARB. EMFAC does not provide emission rates per hour or mile as with the on-road emission model and only provides emission inventories. Emission results are produced in tons per day while all activity, fuel consumption and horsepower hours were reported at annual levels. The emission inventory is based on specific assumptions including the average horsepower rating of specific types of equipment and the hours of operation annually. These assumptions are not always consistent with assumptions used in the modeling of project level emissions. Therefore, the emissions inventory was converted into emission rates to accurately calculate emissions from TRU operation associated with project level details. This was accomplished by converting the annual horsepower hours to daily operational characteristics and converting the daily emission levels into hourly emission rates based on the total emission of each

⁹ Based on Table II-3, Port and Rail Cargo Handling Equipment Demographics by Type, from CARB's Technology Assessment: Mobile Cargo Handling Equipment document, a single piece of equipment could operate up to 2 hours per day (Total Average Annual Activity divided by Total Number Pieces of Equipment). As such, the analysis conservatively assumes that the tractor/loader/backhoe would operate up to 4 hours per day.

criteria pollutant by equipment type and the average daily hours of operation. TRU emission calculations are provided in Appendix 3.1.

3.5.7 Operational Emissions Summary

Impacts Without Mitigation

Operational activities for summer and winter scenarios are presented in Table 3-9. Detailed operation model outputs for the Project are presented in Appendix 3.1. As shown in Table 3-9, the Project would not exceed the numerical thresholds of significance established by the MDAQMD for emissions of any criteria pollutant. As such, operational impacts would be considered less-than-significant.

TABLE 3-9: PEAK OPERATIONAL EMISSIONS – WITHOUT MITIGATION

Source	Emissions (lbs/day)					
	ROG	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Summer						
Mobile	11.75	87.29	134.84	1.09	55.98	15.91
Area	41.60	0.51	60.08	0.00	0.11	0.08
Stationary	1.64	4.59	4.18	0.01	0.24	0.24
TRUs	24.54	24.37	2.95	0.00	0.84	0.77
On-site Equipment	0.59	1.88	82.22	0.00	0.15	0.14
Maximum Daily Emissions	80.12	118.62	284.28	1.10	57.31	17.14
MDAQMD Regional Thresholds	137	137	548	137	82	65
Threshold Exceeded?	NO	NO	NO	NO	NO	NO
Winter						
Mobile	10.86	92.13	106.71	1.07	55.98	15.91
Area	31.73	0.00	0.00	0.00	0.00	0.00
Stationary	1.64	4.59	4.18	0.01	0.24	0.24
TRUs	24.54	24.37	2.95	0.00	0.84	0.77
On-site Equipment	0.59	1.88	82.22	0.00	0.15	0.14
Maximum Daily Emissions	69.36	122.96	196.07	1.07	57.20	17.06
MDAQMD Regional Thresholds	137	137	548	137	82	65
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

Source: CalEEMod operational-source (unmitigated) emissions are presented in Appendix 3.1.

3.5.8 Potential Emissions In Other Air Districts

The proposed Project's truck and TRU trip related emissions that could occur outside of the air district in which the Project is located (MDAQMD) are presented for informational purposes. More specifically, travel within the Eastern Kern Air Pollution Control District (EKAPCD), San Joaquin Valley Air Pollution Control District (SJVAPCD), Antelope Valley Air Quality Management District (AVAQMD) and South Coast Air Quality Management District (SCAQMD) were evaluated. Table 3-10 summarizes the thresholds of significance of the neighboring air districts. Table 3-11 below provides

a summary of the percentage breakdown of truck travel by air district based on the Streetlight™ data as presented in Section 3.5.1 above.

TABLE 3-10: AIR QUALITY THRESHOLDS FOR NEIGHBORING AIR DISTRICTS

Pollutant	Thresholds			
	EKAPCD (tons per year)	SJVAPCD (tons per year)	MDAQMD (pounds per day)	SCAQMD (pounds per day)
VOC	25	10	137	55
NO _x	25	10	137	55
CO	N/A	100	548	550
SO _x	N/A	27	137	150
PM ₁₀	15	15	82	150
PM _{2.5}	N/A	15	65	55

Source: EKAPCD, SJVAPCD, AVAQMD, SCAQMD

TABLE 3-11: ACTIVITY BY AIR DISTRICT

Air District	Truck Activity
EKAPCD	14%
SJVAPCD	6%
AVAQMD	1%
SCAQMD	72%

Note: The remaining 7% of truck activity is related to trucks that remain in the Mojave Desert Air Basin.

The Project's modeled average truck trip length is 62.1 miles, as discussed in Section 3.5.1 of this report. To accurately reflect regional travel behavior, this total distance was distributed among the applicable air districts based on StreetLight Data's Truck Volume Metrics for medium-duty (MDT; 2- and 3-axle) and heavy-duty (HDT; 4+ axle) trucks within the Project area. Analysis of these data indicates that approximately 72 percent of Project-related truck trips are expected to cross into the South Coast Air Quality Management District (SCAQMD), with an average trip length of 21 miles occurring within that jurisdiction. The remaining 36.85 miles were conservatively divided evenly among the Eastern Kern Air Pollution Control District (EKAPCD), San Joaquin Valley Air Pollution Control District (SJVAPCD), and Antelope Valley Air Quality Management District (AVAQMD). The balance of approximately 4.35 miles represents truck travel within the Mojave Desert Air Quality Management District (MDAQMD), accounting for local circulation and connections within the district boundary. These allocations were used to apportion Project-generated truck emissions among the affected air districts, ensuring a comprehensive and regionally representative assessment of potential air quality impacts.

The percentages on Table 3-11 were then applied to the truck and TRUs emissions that are a subset to the emissions totals presented on Table 3-9.

Tables 3-12 through 3-15 summarize the emissions that could occur due to off-site truck and TRU travel within the aforementioned air districts. The emissions are presented in tons per year for the EKAPCD and SJVAPCD (as there is no seasonal variation), and pounds per day for AVAQMD and SCAQMD (for summer and winter) consistent with the applicable thresholds in each air district.

TABLE 3-12: PEAK OPERATIONAL EMISSIONS – EKAPCD

Source	Emissions (lbs/day)					
	ROG	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Mobile	0.26	2.02	2.95	0.02	1.23	0.35
TRUs	0.54	0.53	0.06	0.00	0.02	0.02
Maximum Daily Emissions	0.79	2.55	3.02	0.02	1.24	0.37
EKAPCD Regional Thresholds	25	25	N/A	N/A	15	N/A
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

TABLE 3-13: PEAK OPERATIONAL EMISSIONS – SJVAPCD

Source	Emissions (lbs/day)					
	ROG	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Mobile	0.91	2.02	2.34	0.02	1.23	0.35
TRUs	0.54	0.53	0.06	0.00	0.02	0.02
Maximum Daily Emissions	1.45	2.55	2.40	0.02	1.24	0.37
SJVAPCD Regional Thresholds	10	10	100	27	15	15
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

TABLE 3-14: PEAK OPERATIONAL EMISSIONS – AVAQMD

Source	Emissions (lbs/day)					
	ROG	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Mobile	1.41	11.06	16.18	0.13	6.72	1.91
TRUs	2.95	2.92	0.35	0.00	0.10	0.09
Maximum Daily Emissions	4.35	13.98	16.53	0.13	6.82	2.00
AVAQMD Regional Thresholds	137	137	548	137	82	65
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

TABLE 3-15: PEAK OPERATIONAL EMISSIONS – SCAQMD

Source	Emissions (lbs/day)					
	ROG	NO _x	CO	SO ₂	PM ₁₀	PM _{2.5}
Mobile	3.97	31.15	45.60	0.37	18.93	5.38
TRUs	8.30	8.24	1.00	0.00	0.28	0.26
Maximum Daily Emissions	12.27	39.39	46.60	0.37	19.21	5.64
SCAQMD Regional Thresholds	55	55	550	150	150	55
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

3.6 CO “HOT SPOT” ANALYSIS

A CO hotspot is defined as a localized concentration of CO exceeding the state one-hour standard of 20 ppm or the eight-hour standard of 9 ppm. At the time the most recent CEQA Air Quality Handbook (1993) was published by South Coast Air Quality Management District (SCAQMD), the air basin was designated as non-attainment, requiring projects to perform hotspot analyses to ensure they did not worsen the existing conditions. Over the last two decades, background CO concentrations have been significantly reduced due to regulatory controls on tailpipe emissions, which have culminated in the air basin achieving attainment status for CO.

The 2003 AQMP’s findings underscore that CO hotspots are highly unlikely due to the reduced background concentrations and the effectiveness of California’s air quality management strategies. The substantial reduction in CO levels from the vehicle fleet and the state’s attainment status for CO further diminish the need for detailed microscale hotspot analyses, reinforcing that existing monitoring and regulatory frameworks adequately address potential air quality concerns.

In 2003, the SCAQMD as part of its AQMP development process, prepared modeling to determine the potential for CO Hotspots at the four busiest intersections in the air basin. As summarized in the 2003 AQMP, even at one of the busiest intersections at that time, only 0.7 ppm of CO is attributable to vehicular traffic and the remaining 7.7 ppm were due to ambient background conditions. As shown on Table 2-5 in this report, the background 1-hour and 8-hour concentrations are well below the applicable AAQS. The 2003 AQMP’s findings underscore that CO hotspots are highly unlikely due to the reduced background concentrations and the effectiveness of California’s air quality management strategies. The substantial reduction in CO levels from the vehicle fleet and the state’s attainment status for CO further diminish the need for detailed microscale hotspot analyses, reinforcing that existing monitoring and regulatory frameworks adequately address potential air quality concerns.

As such, Project-related traffic at any intersections within the Project area would not cause or contribute to a CO hotspot since the background concentrations are low and any contribution from Project traffic would be negligible.

3.7 AQMP

The Federal Particulate Matter Attainment Plan and Ozone Attainment Plan for the Mojave Desert set forth a comprehensive set of programs that will lead the MDAB into compliance with federal and state air quality standards. The control measures and related emission reduction estimates within the Federal Particulate Matter Attainment Plan and Ozone Attainment Plan are based upon emissions projections for a future development scenario derived from land use, population, and employment characteristics defined in consultation with local governments. Accordingly, conformance with these attainment plans for development projects is determined by demonstrating compliance the indicators discussed below:

3.7.1 Consistency Criterion No. 1

Local land use plans and/or population projections

The Town of Apple Valley General Plan designates the Project site for Office/Professional (O-P) and the Project site is zoned Office Professional (O-P). The Project Applicant proposes a general plan and zoning amendment to change the designation to Regional Commercial (C-R) and Regional

Commercial (C-R) with I-N Industrial Overlay, respectively. Additionally, the Project would require a Development Code Amendment to expand the existing C-R e-commerce fulfillment and distribution center overlay boundaries to include the Project site.

Although the Project is not consistent with the current General Plan and zoning designations and would require a General Plan Amendment, Zone Change, and Development Code Amendment; Project would not result in an operational-related air quality impact. As a result, the Project would not conflict with the goals and objectives of the AQMP. Furthermore, the Project, as evaluated herein would not exceed the operational regional or localized air quality significance thresholds and would meet consistency criterion No. 1.

3.7.4 Consistency Criterion No. 2

All MDAQMD Rules and Regulations

The Project would be required to comply with all applicable MDAQMD Rules and Regulations, including, but not limited to Rules 401 (Visible Emissions), 402 (Nuisance), 403 (Fugitive Dust), and 1113 (Architectural Coatings). As previously stated in Section ES.2 of this AQIA, the Project would implement MDAQMD Rule 403 and MDAQMD Rule 1113. Because the Project would not conflict with any MDAQMD rules or regulations, the Project would be meet consistency criterion No. 2.

3.7.3 Consistency Criterion No. 3

Demonstrating that the project will not increase the frequency or severity of a violation in the federal or state ambient air quality standards

As substantiated herein, Project operational-source emissions for ROG/VOC, NO_x, CO, SO_x, PM₁₀, and PM_{2.5} would not exceed applicable MDAQMD significance thresholds. However, construction-source emissions would exceed applicable MDAQMD regional thresholds for ROGs/VOCs emissions. As such, the Project would have the potential to increase the frequency or severity of a violation in the federal or state ambient air quality for Project construction.

AQMP Consistency Conclusion

The Project's proposed land use and zoning designations for the Project site would not conflict with the goals and objectives of the AQMP, as explained under Consistency Criteria No. 1, above. However, the Project would exceed the applicable regional thresholds during construction for ROGs/VOCs emissions. Therefore, the Project may conflict with the AQMP, and impacts would be potentially significant..

3.8 POTENTIAL IMPACTS TO SENSITIVE RECEPTORS

The potential impact of Project-generated air pollutant emissions at sensitive receptors has also been considered. Sensitive receptors can include uses such as long-term health care facilities, rehabilitation centers, and retirement homes. Residences, schools, playgrounds, childcare centers, and athletic facilities can also be considered as sensitive receptors.

As per the MDAQMD's *Guidelines*, the following project types located within a specified distance to an existing or planned sensitive receptor land use must be evaluated to determine exposure of substantial pollutant concentrations to sensitive receptors (24):

- Any industrial project within 1,000 feet;
- A distribution center (40 or more fs per day) within 1,000 feet;
- A major transportation project (50,000 or more vehicles per day) within 1,000 feet;
- A dry cleaner using perchloroethylene within 500 feet;
- A gasoline dispensing facility within 300 feet.

The Project involves the development of a single industrial warehouse and distribution building totaling 1,381,412 square feet. Each building will be designed to include 10% General Light Industrial, 15% High-Cube Cold Storage Warehouse use and 75% High-Cube Fulfillment (Non-Sort) Center Warehouse use.

Receptors in the Project study area are described below and shown on Exhibit 3-A. All distances are measured from the Project site's boundary to the outdoor living areas (e.g., backyards) or at the building façade, whichever is closer to the Project site. The selection of receptor locations is based on Federal Highway Administration (FHWA) guidelines and is consistent with additional guidance provided by Caltrans and the Federal Transit Administration (FTA). Distance is measured in a straight line from the project boundary to each receptor location.

- Location R1 represents the existing residence at 19934 Doberman Street, approximately 3,670 feet northeast of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receptor R1 is placed at the building façade.
- Location R2 represents the existing residence at 19414 Stoddard Wells Road, approximately 2,952 feet northeast of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receptor R2 is placed at the building façade.
- Location R3 represents the existing residence at 19823 Johnson Road, approximately 2,658 feet east of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receptor R3 is placed at the building façade.
- Location R4 represents the existing residence at 19277 Stoddard Wells Road, approximately 388 feet south of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receptor R4 is placed at the building façade.
- Location R5 represents the Landfill Site located at 18600 Stoddard Wells Road, approximately 6,056 feet west of the Project site.
- Location R6 represents the Walmart Distribution Center at 21101 Johnson Road, located approximately 11,607 feet east of the Project site.

Based on Exhibit 3-A, the nearest receptor is an existing residence at 19277 Stoddard Wells Road, approximately 388 feet south of the Project site.

The Project would have a potentially significant health risk impact if it results in a maximum incremental cancer risk from emission of Toxic Air Contaminants (TACs) of ≥ 10 in one million and/or a chronic & acute hazard index that is ≥ 1.0 . In the case of the Project, the TAC of concern is diesel particulate matter (DPM) that could be generated by Project construction activities, and on-site and off-site DPM that would result from on-going Project operations.

For purposes of this evaluation, a Health Risk Assessment (HRA) has been prepared by Urban Crossroads, Inc. under a separate cover. The results of the *Apple Valley 84 Construction and*

Operational Health Risk Assessment indicate that the Project would not result in any potentially significant health risk impacts from exposure to DPM emissions (29).

EXHIBIT 3-A: SENSITIVE RECEPTOR LOCATIONS

LEGEND:

- [Red dashed box] Site Boundary
- [Blue circle with cross] Receptor Locations
- Distance from receptor to Project site boundary (in feet)

3.9 ODORS

The potential for the Project to generate objectionable odors has also been considered. Land uses generally associated with odor complaints include:

- Agricultural uses (livestock and farming)
- Wastewater treatment plants
- Food processing plants
- Chemical plants
- Composting operations
- Refineries
- Landfills
- Dairies
- Fiberglass molding facilities

The Project does not contain land uses typically associated with emitting objectionable odors. Potential odor sources associated with the Project may result from construction equipment exhaust and the application of asphalt and architectural coatings during construction activities and the temporary storage of typical solid waste (refuse) associated with the Project's (long-term operational) uses. Standard construction requirements would minimize odor impacts from construction. The construction odor emissions would be temporary, short-term, and intermittent in nature and would cease upon completion of the respective phase of construction and is thus considered less than significant. It is expected that Project-generated refuse would be stored in covered containers and removed at regular intervals in compliance with current solid waste regulations. The Project would also be required to comply with MDAQMD Rule 402 to prevent occurrences of public nuisances. Therefore, odors and other emissions (such as those leading to odors) associated with construction and operations activities of the Project would be less than significant and no mitigation is required (30).

3.10 CUMULATIVE IMPACTS

The MDAQMD relies on the SCAQMD guidance for determining cumulative impacts. The SCAQMD has recognized that there is typically insufficient information to quantitatively evaluate the cumulative contributions of multiple projects because each project applicant has no control over nearby projects.

The SCAQMD published a report on how to address cumulative impacts from air pollution: *White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution* (31). In this report the SCAQMD clearly states (Page D-3):

"...the SCAQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR. The only case where the significance thresholds for project specific and cumulative impacts differ is the Hazard Index (HI) significance threshold for TAC emissions. The project specific (project increment) significance threshold is HI > 1.0 while the cumulative (facility-wide) is HI > 3.0. It should be noted that the HI is only one of three TAC emission significance thresholds considered (when applicable) in a CEQA analysis. The other two are the maximum individual cancer risk (MICR) and the cancer

burden, both of which use the same significance thresholds (MICR of 10 in 1 million and cancer burden of 0.5) for project specific and cumulative impacts.

Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant."

Consistent with the above SCAQMD guidance, individual projects that do not generate operational or construction emissions that exceed the MDAQMD's recommended daily thresholds for project-specific impacts would also not cause a cumulatively considerable increase in emissions for those pollutants for which the Basin is in nonattainment, and, therefore, would not be considered to have a significant, adverse air quality impact. Conversely, individual project-related construction and operational emissions that exceed MDAQMD thresholds for project-specific impacts would be considered cumulatively considerable.

Construction-Source Emission Impacts

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that Project construction-source air pollutant emissions would not result in exceedances of regional thresholds after implementation of MM AQ-1. Therefore, Project construction-source emissions would be considered less than significant on a Project-specific and cumulative basis with mitigation. As previously noted, the Project would exceed the applicable MDAQMD regional threshold for construction-source emissions of VOCs. As such, the Project would result in a cumulatively significant impact for construction activity.

Operational-Source Emission Impacts

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that Project operational-source air pollutant emissions would not result in exceedances of regional thresholds. Therefore, Project operational-source emissions would be considered less than significant on a project-specific and cumulative basis.

5 REFERENCES

1. **State of California.** *2020 CEQA California Environmental Quality Act.* 2020.
2. **Mojave Desert Air Quality Management District.** Rule 403 Fugitive Dust Control for the Mojave Desert Planning Area. [Online] <https://www.mdaqmd.ca.gov/home/showpublisheddocument/8482/637393282546170000>.
3. —. Rule 1113 Architectural Coatings. [Online] <http://mdaqmd.ca.gov/home/showdocument?id=418>.
4. **South Coast Air Quality Management District.** *Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning.* 2005.
5. **St. Croix Sensory, Inc.** *The "Gray Line" Between Odor Nuisance and Health Effects.* 2000.
6. **California Air Resources Board.** Ambient Air Quality Standards (AAQS). [Online] 2024. <http://www.arb.ca.gov/research/aaqs/aaqs2.pdf>.
7. **United State Environmental Protection Agency.** Frequent Questions about General Conformity . *EPA.* [Online] <https://www.epa.gov/general-conformity/frequent-questions-about-general-conformity#8>.
8. **South Coast Air Quality Management District.** Annual Air Quality Monitoring Network Plan. [Online] July 2023. <https://www.aqmd.gov/docs/default-source/default-document-library/south-coast-aqmd-2023-annual-air-quality-monitoring-network-plan.pdf?sfvrsn=0>.
9. **Air Resources Board.** *Appendix C Maps and Tables of Area Designations for State and National Ambient Air Quality Standards.* 2024.
10. —. iAdam: Air Quality Data Statistics. *California Air Resources Board.* [Online] <https://arb.ca.gov/adam>.
11. **California Air Resources Board.** iAir Quality Data (PST) Query Tool. *AQMIS.* [Online] <https://www.arb.ca.gov/aqmis2/aqdselect.php?tab=specialrpt>.
12. **Environmental Protection Agency.** National Ambient Air Quality Standards (NAAQS). [Online] 1990. <https://www.epa.gov/environmental-topics/air-topics>.
13. —. Air Pollution and the Clean Air Act. [Online] <http://www.epa.gov/air/caa/>.
14. **United States Environmental Protection Agency.** 1990 Clean Air Act Amendment Summary: Title I. [Online] <https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-i>.
15. —. 1990 Clean Air Act Amendment Summary: Title II. [Online] <https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-ii>.
16. **Air Resources Board.** California Ambient Air Quality Standards (CAAQS). [Online] 2009. [Cited: April 16, 2018.] <http://www.arb.ca.gov/research/aaqs/caaqs/caaqs.htm>.
17. **California Air Resources Board.** Western Mojave Desert Air Quality Management Plans. [Online] <https://ww2.arb.ca.gov/our-work/programs/california-state-implementation-plans/nonattainment-area-plans/western-mojave>.
18. —. *The California Almanac of Emissions and Air Quality.* 2013.
19. —. iADAM: Air Quality Data Statistics. *California Air Resources Board.* [Online] <https://arb.ca.gov/adam/topfour/topfour1.php>.
20. **Ralph Propper, Patrick Wong, Son Bui, Jeff Austin, William Vance, Alvaro Alvarado, Bart Croes, and Dongmin Luo.** Ambient and Emission Trends of Toxic Air Contaminants in California. *American Chemical Society: Environmental Science & Technology.* 2015.
21. **California Air Resources Board.** ARB's Drayage Truck Regulatory Activities. [Online] <http://www.arb.ca.gov/msprog/onroad/porttruck/porttruck.htm>.

22. **Air Resources Board.** Truck and Bus Regulation. *On-Road Heavy-Duty Diesel Vehicles (In-Use) Regulation.* [Online] <http://www.arb.ca.gov/msprog/onrdiesel/onrdiesel.htm>.
23. **The Port of Los Angeles.** Clean Truck Program. [Online] http://www.portoflosangeles.org/ctp/idx_ctp.asp.
24. **Mojave Desert Air Quality Management District.** California Environmental Quality Act (CEQA) and Federal Conformity Guidelines. [Online] February 2020. <https://www.mdaqmd.ca.gov/home/showpublisheddocument/8510/638126583450270000>.
25. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] March 2023. www.caleemod.com.
26. **Association of Environmental Professionals.** 2024 CEQA California Environmental Quality Act. 2024.
27. **Urban Crossroads, Inc.** *Bell Mountain Commerce Center Traffic Analysis.* 2025.
28. —. *Bell Mountain Commerce Center Vehicle Miles Traveled Analysis.* 2025.
29. —. *Bell Mountain Commerce Center Construction and Operational Health Risk Assessment.* 2025.
30. **South Coast Air Quality Management District.** RULE 402 NUISANCE. [Online] <http://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-402.pdf>.
31. **Goss, Tracy A and Kroeger, Amy.** White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. [Online] South Coast Air Quality Management District, 2003. <http://www.aqmd.gov/docs/default-source/Agendas/Environmental-Justice/cumulative-impacts-working-group/cumulative-impacts-white-paper.pdf>.

6 CERTIFICATION

The contents of this air study report represent an accurate depiction of the environmental impacts associated with the proposed Apple Valley 84 Project. The information contained in this air quality impact assessment report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com.

Haseeb Qureshi
Principal
URBAN CROSSROADS, INC.
1133 Camelback #8329
Newport Beach, CA 92658
hqureshi@urbanxroads.com

Education

Master of Science in Environmental Studies
California State University, Fullerton • May, 2010
Bachelor of Arts in Environmental Analysis and Design
University of California, Irvine • June, 2006

Professional Affiliations

AEP – Association of Environmental Planners
AWMA – Air and Waste Management Association
ASTM – American Society for Testing and Materials

Professional Certifications

Planned Communities and Urban Infill – Urban Land Institute • June, 2011
Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April, 2008
Principles of Ambient Air Monitoring – CARB • August, 2007
AB2588 Regulatory Standards – Trinity Consultants • November, 2006
Air Dispersion Modeling – Lakes Environmental • June, 2006

APPENDIX 2.1:

STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS

Appendix C - Maps and Tables of Area Designations for State and National Ambient Air Quality Standards

This attachment fulfills the requirement of Health and Safety Code section 40718 for CARB to publish maps that identify areas where one or more violations of any State ambient air quality standard (State standard) or national ambient air quality standard (national standard) have been measured. The national standards are those promulgated under section 109 of the federal Clean Air Act (42 U.S.C. 7409).

This attachment is divided into three parts. The first part comprises a table showing the levels, averaging times, and measurement methods for each of the State and national standards. This is followed by a section containing maps and tables showing the area designations for each pollutant for which there is a State standard in the California Code of Regulations, title 17, section 70200. The last section contains maps and tables showing the most current area designations for the national standards.

Table of Ambient Air Quality Standards

Ambient Air Quality Standards									
Pollutant	Averaging Time	California Standards ¹		National Standards ²					
		Concentration ³	Method ⁴	Primary ^{3,5}	Secondary ^{3,6}	Method ⁷			
Ozone (O ₃) ⁸	1 Hour	0.09 ppm (180 µg/m ³)	Ultraviolet Photometry	—	Same as Primary Standard	Ultraviolet Photometry			
	8 Hour	0.070 ppm (137 µg/m ³)		0.070 ppm (137 µg/m ³)					
Respirable Particulate Matter (PM10) ⁹	24 Hour	50 µg/m ³	Gravimetric or Beta Attenuation	150 µg/m ³	Same as Primary Standard	Inertial Separation and Gravimetric Analysis			
	Annual Arithmetic Mean	20 µg/m ³		—					
Fine Particulate Matter (PM2.5) ⁹	24 Hour	—	Gravimetric or Beta Attenuation	35 µg/m ³	Same as Primary Standard	Inertial Separation and Gravimetric Analysis			
	Annual Arithmetic Mean	12 µg/m ³		9.0 µg/m ³	15.0 µg/m ³				
Carbon Monoxide (CO)	1 Hour	20 ppm (23 mg/m ³)	Non-Dispersive Infrared Photometry (NDIR)	35 ppm (40 mg/m ³)	—	Non-Dispersive Infrared Photometry (NDIR)			
	8 Hour	9.0 ppm (10 mg/m ³)		9 ppm (10 mg/m ³)	—				
	8 Hour (Lake Tahoe)	6 ppm (7 mg/m ³)		—	—				
Nitrogen Dioxide (NO ₂) ¹⁰	1 Hour	0.18 ppm (339 µg/m ³)	Gas Phase Chemiluminescence	100 ppb (188 µg/m ³)	—	Gas Phase Chemiluminescence			
	Annual Arithmetic Mean	0.030 ppm (57 µg/m ³)		53 ppb (100 µg/m ³)	Same as Primary Standard				
Sulfur Dioxide (SO ₂) ¹¹	1 Hour	0.25 ppm (655 µg/m ³)	Ultraviolet Fluorescence	75 ppb (196 µg/m ³)	—	Ultraviolet Fluorescence; Spectrophotometry (Pararosaniline Method)			
	3 Hour	—		—	0.5 ppm (1300 µg/m ³)				
	24 Hour	0.04 ppm (105 µg/m ³)		0.14 ppm (for certain areas) ¹¹	—				
	Annual Arithmetic Mean	—		0.030 ppm (for certain areas) ¹¹	—				
Lead ^{12,13}	30 Day Average	1.5 µg/m ³	Atomic Absorption	—	—	High Volume Sampler and Atomic Absorption			
	Calendar Quarter	—		1.5 µg/m ³ (for certain areas) ¹²	Same as Primary Standard				
	Rolling 3-Month Average	—		0.15 µg/m ³					
Visibility Reducing Particles ¹⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape	No National Standards					
Sulfates	24 Hour	25 µg/m ³	Ion Chromatography						
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m ³)	Ultraviolet Fluorescence						
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m ³)	Gas Chromatography						

See footnotes on next page ...

1. California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1- and 24-hour), nitrogen dioxide, and particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 \mu g/m^3 is equal to or less than one. For PM2.5, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
4. Any equivalent measurement method which can be shown to the satisfaction of the CARB to give equivalent results at or near the level of the air quality standard may be used.
5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
9. On February 7, 2024, the national annual PM2.5 primary standard was lowered from 12.0 \mu g/m^3 to 9.0 \mu g/m^3 . The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 \mu g/m^3 , as was the annual secondary standard of 15.0 \mu g/m^3 . The existing 24-hour PM10 standards (primary and secondary) of 150 \mu g/m^3 also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
11. On June 2, 2010, a new 1-hour SO_2 standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO_2 national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.

Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.

12. The CARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 \mu g/m^3 as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
14. In 1989, the CARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

Area Designations for the State Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a State standard set forth in the California Code of Regulations, title 17, section 60200. Each area is identified as attainment, nonattainment, nonattainment transitional, or unclassified for each pollutant, as shown below:

Designation	Abbreviation
Attainment	A
Nonattainment	N
Nonattainment Transitional	NA-T
Unclassified	U


In general, CARB designates areas by air basin for pollutants with a regional impact and by county for pollutants with a more local impact. However, when there are areas within an air basin or county with distinctly different air quality deriving from sources and conditions not affecting the entire air basin or county, CARB may designate a smaller area. Generally, when boundaries of the designated area differ from the air basin or county boundaries, the description of the specific area is referenced at the bottom of the summary table.

Table 1 California Ambient Air Quality Standards Area Designations for Ozone¹

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	
Alpine County	U
Inyo County	N
Mono County	N
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	NA-T
MOJAVE DESERT AIR BASIN	N
MOUNTAIN COUNTIES AIR BASIN	
Amador County	NA-T
Calaveras County	NA-T
El Dorado County (portion)	N
Mariposa County	N
Nevada County	N
Placer County (portion)	NA-T
Plumas County	U
Sierra County	U
Tuolumne County	NA-T
NORTH CENTRAL COAST AIR BASIN	A
NORTH COAST AIR BASIN	A
NORTHEAST PLATEAU AIR BASIN	A
SACRAMENTO VALLEY AIR BASIN	
Butte County	NA-T
Colusa and Glenn Counties	A
Shasta County	NA-T
Sutter/Yuba Counties	
Sutter Buttes	NA-T
Remainder of Sutter County	NA-T
Yuba County	NA-T
Yolo/Solano Counties	NA-T
Remainder of Air Basin	N
SALTON SEA AIR BASIN	N
SAN DIEGO AIR BASIN	N
SAN FRANCISCO BAY AREA AIR BASIN	NA-T
SAN JOAQUIN VALLEY AIR BASIN	N
SOUTH CENTRAL COAST AIR BASIN	
San Luis Obispo County	N
Santa Barbara County	NA-T
Ventura County	N
SOUTH COAST AIR BASIN	N

¹ AB 3048 (Olberg) and AB 2525 (Miller) signed into law in 1996, made changes to Health and Safety Code, section 40925.5. One of the changes allows nonattainment districts to become nonattainment-transitional for ozone by operation of law.

Figure 1

Last Updated: November 2024
 Air Quality Planning and Science Division, CARB

Table 2
California Ambient Air Quality Standards Area Designations for
Suspended Particulate Matter (PM₁₀)

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	N
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	N
MOJAVE DESERT AIR BASIN	N
MOUNTAIN COUNTIES AIR BASIN	
Amador County	U
Calaveras County	N
El Dorado County (portion)	N
Mariposa County	
- Yosemite National Park	N
- Remainder of County	U
Nevada County	U
Placer County (portion)	N
Plumas County	U
Sierra County	U
Tuolumne County	U
NORTH CENTRAL COAST AIR BASIN	N
NORTH COAST AIR BASIN	
Del Norte, Mendocino, Sonoma (portion) and Trinity Counties	A
Remainder of Air Basin	N
NORTHEAST PLATEAU AIR BASIN	
Siskiyou County	A
Remainder of Air Basin	U
SACRAMENTO VALLEY AIR BASIN	
Shasta County	A
Remainder of Air Basin	N
SALTON SEA AIR BASIN	N
SAN DIEGO AIR BASIN	N
SAN FRANCISCO BAY AREA AIR BASIN	N
SAN JOAQUIN VALLEY AIR BASIN	N
SOUTH CENTRAL COAST AIR BASIN	N
SOUTH COAST AIR BASIN	N

Figure 2

Last Updated: November 2024
 Air Quality Planning and Science Division, CARB

Table 3
California Ambient Air Quality Standards Area Designations for
Fine Particulate Matter (PM_{2.5})

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	A
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	A
MOJAVE DESERT AIR BASIN	A
MOUNTAIN COUNTIES AIR BASIN	
Plumas County	
- Portola Valley ²	N
- Remainder Plumas County	U
Remainder of Air Basin	U
NORTH CENTRAL COAST AIR BASIN	A
NORTH COAST AIR BASIN	A
NORTHEAST PLATEAU AIR BASIN	A
SACRAMENTO VALLEY AIR BASIN	
Butte County	A
Colusa County	A
Glenn County	A
Placer County (portion)	A
Sacramento County	A
Shasta County	A
Sutter and Yuba Counties	N
Remainder of Air Basin	U
SALTON SEA AIR BASIN	
Imperial County	
- City of Calexico ³	N
Remainder of Air Basin	A
SAN DIEGO AIR BASIN	N
SAN FRANCISCO BAY AREA AIR BASIN	A
SAN JOAQUIN VALLEY AIR BASIN	N
SOUTH CENTRAL COAST AIR BASIN	A
SOUTH COAST AIR BASIN	N

² California Code of Regulations, title 17, section 60200(c)

³ California Code of Regulations, title 17, section 60200(a)

Figure 3

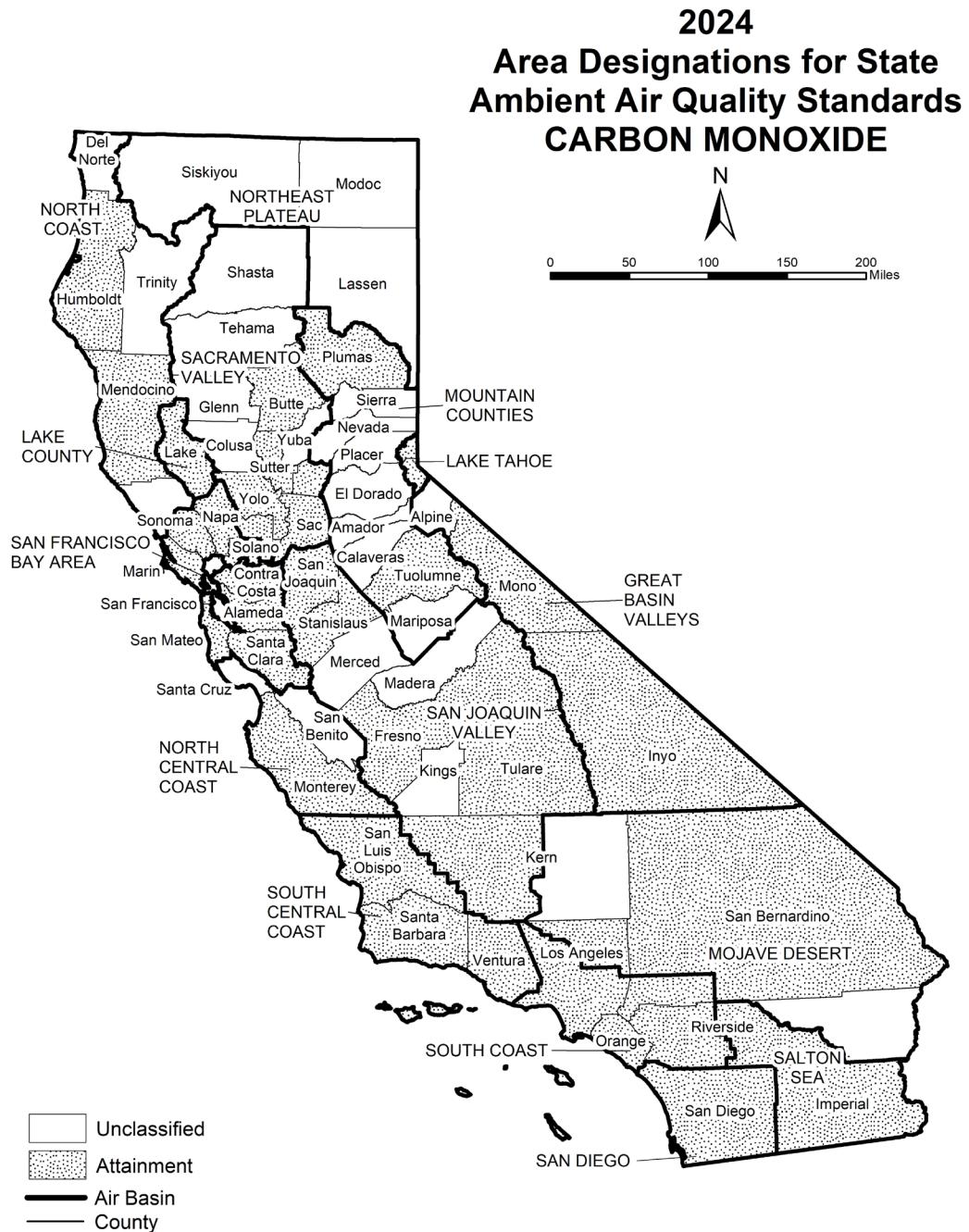

Last Updated: November 2024
 Air Quality Planning and Science Division, CARB

Table 4
California Ambient Air Quality Standards Area Designations for
Carbon Monoxide*

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	
Alpine County	U
Inyo County	A
Mono County	A
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	A
MOJAVE DESERT AIR BASIN	
Kern County (portion)	U
Los Angeles County (portion)	A
Riverside County (portion)	U
San Bernardino County (portion)	A
MOUNTAIN COUNTIES AIR BASIN	
Amador County	U
Calaveras County	U
El Dorado County (portion)	U
Mariposa County	U
Nevada County	U
Placer County (portion)	U
Plumas County	A
Sierra County	U
Tuolumne County	A
NORTH CENTRAL COAST AIR BASIN	
Monterey County	A
San Benito County	U
Santa Cruz County	U
NORTH COAST AIR BASIN	
Del Norte County	U
Humboldt County	A
Mendocino County	A
Sonoma County (portion)	U
Trinity County	U
NORTHEAST PLATEAU AIR BASIN	U
SACRAMENTO VALLEY AIR BASIN	
Butte County	A
Colusa County	U
Glenn County	U
Placer County (portion)	A
Sacramento County	A
Shasta County	U
Solano County (portion)	A
Sutter County	A
Tehama County	U
Yolo County	A
Yuba County	U
SALTON SEA AIR BASIN	A
SAN DIEGO AIR BASIN	A
SAN FRANCISCO BAY AREA AIR BASIN	A
SAN JOAQUIN VALLEY AIR BASIN	
Fresno County	A
Kern County (portion)	A
Kings County	U
Madera County	U
Merced County	U
San Joaquin County	A
Stanislaus County	A
Tulare County	A
SOUTH CENTRAL COAST AIR BASIN	A
SOUTH COAST AIR BASIN	A

* The area designated for carbon monoxide is a county or portion of a county

Figure 4

Last Updated: November 2024
 Air Quality Planning and Science Division, CARB

Table 5
California Ambient Air Quality Standards Area Designations for
Nitrogen Dioxide

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	A
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	A
MOJAVE DESERT AIR BASIN	A
MOUNTAIN COUNTIES AIR BASIN	A
NORTH CENTRAL COAST AIR BASIN	A
NORTH COAST AIR BASIN	A
NORTHEAST PLATEAU AIR BASIN	A
SACRAMENTO VALLEY AIR BASIN	A
SALTON SEA AIR BASIN	A
SAN DIEGO AIR BASIN	A
SAN FRANCISCO BAY AREA AIR BASIN	A
SAN JOAQUIN VALLEY AIR BASIN	A
SOUTH CENTRAL COAST AIR BASIN	A
SOUTH COAST AIR BASIN	
CA 60 Near-road Portion of San Bernardino, Riverside, and Los Angeles Counties	A
Remainder of Air Basin	A

Figure 5

Last Updated: November 2024
 Air Quality Planning and Science Division, CARB

Table 6
California Ambient Air Quality Standards Area Designations for
Sulfur Dioxide*

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	A
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	A
MOJAVE DESERT AIR BASIN	A
MOUNTAIN COUNTIES AIR BASIN	A
NORTH CENTRAL COAST AIR BASIN	A
NORTH COAST AIR BASIN	A
NORTHEAST PLATEAU AIR BASIN	A
SACRAMENTO VALLEY AIR BASIN	A
SALTON SEA AIR BASIN	A
SAN DIEGO AIR BASIN	A
SAN FRANCISCO BAY AREA AIR BASIN	A
SAN JOAQUIN VALLEY AIR BASIN	A
SOUTH CENTRAL COAST AIR BASIN	A
SOUTH COAST AIR BASIN	A

* The area designated for sulfur dioxide is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

Figure 6

Last Updated: November 2024
Air Quality Planning and Science Division, CARB

Table 7
California Ambient Air Quality Standards Area Designations for Sulfates

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	A
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	A
MOJAVE DESERT AIR BASIN	A
MOUNTAIN COUNTIES AIR BASIN	A
NORTH CENTRAL COAST AIR BASIN	A
NORTH COAST AIR BASIN	A
NORTHEAST PLATEAU AIR BASIN	A
SACRAMENTO VALLEY AIR BASIN	A
SALTON SEA AIR BASIN	A
SAN DIEGO AIR BASIN	A
SAN FRANCISCO BAY AREA AIR BASIN	A
SAN JOAQUIN VALLEY AIR BASIN	A
SOUTH CENTRAL COAST AIR BASIN	A
SOUTH COAST AIR BASIN	A

Figure 7

Last Updated: November 2024
Air Quality Planning and Science Division, CARB

Table 8
California Ambient Air Quality Standards Area Designations for
Lead (particulate)*

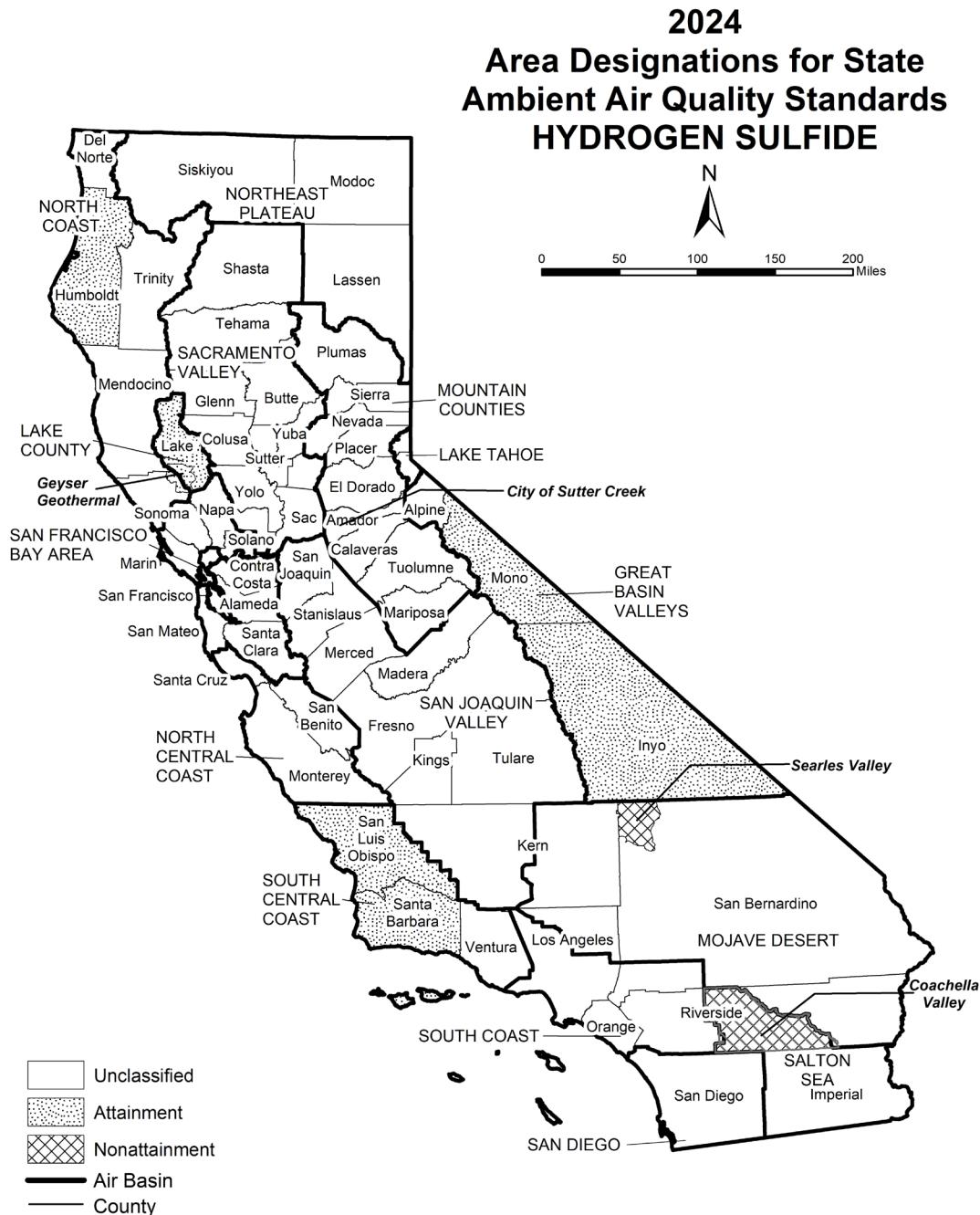
Area	Designations
GREAT BASIN VALLEYS AIR BASIN	A
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	A
MOJAVE DESERT AIR BASIN	A
MOUNTAIN COUNTIES AIR BASIN	A
NORTH CENTRAL COAST AIR BASIN	A
NORTH COAST AIR BASIN	A
NORTHEAST PLATEAU AIR BASIN	A
SACRAMENTO VALLEY AIR BASIN	A
SALTON SEA AIR BASIN	A
SAN DIEGO AIR BASIN	A
SAN FRANCISCO BAY AREA AIR BASIN	A
SAN JOAQUIN VALLEY AIR BASIN	A
SOUTH CENTRAL COAST AIR BASIN	A
SOUTH COAST AIR BASIN	A

* The area designated for lead is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

Figure 8

Last Updated: November 2024
 Air Quality Planning and Science Division, CARB

Table 9
California Ambient Air Quality Standards Area Designations for
Hydrogen Sulfide*

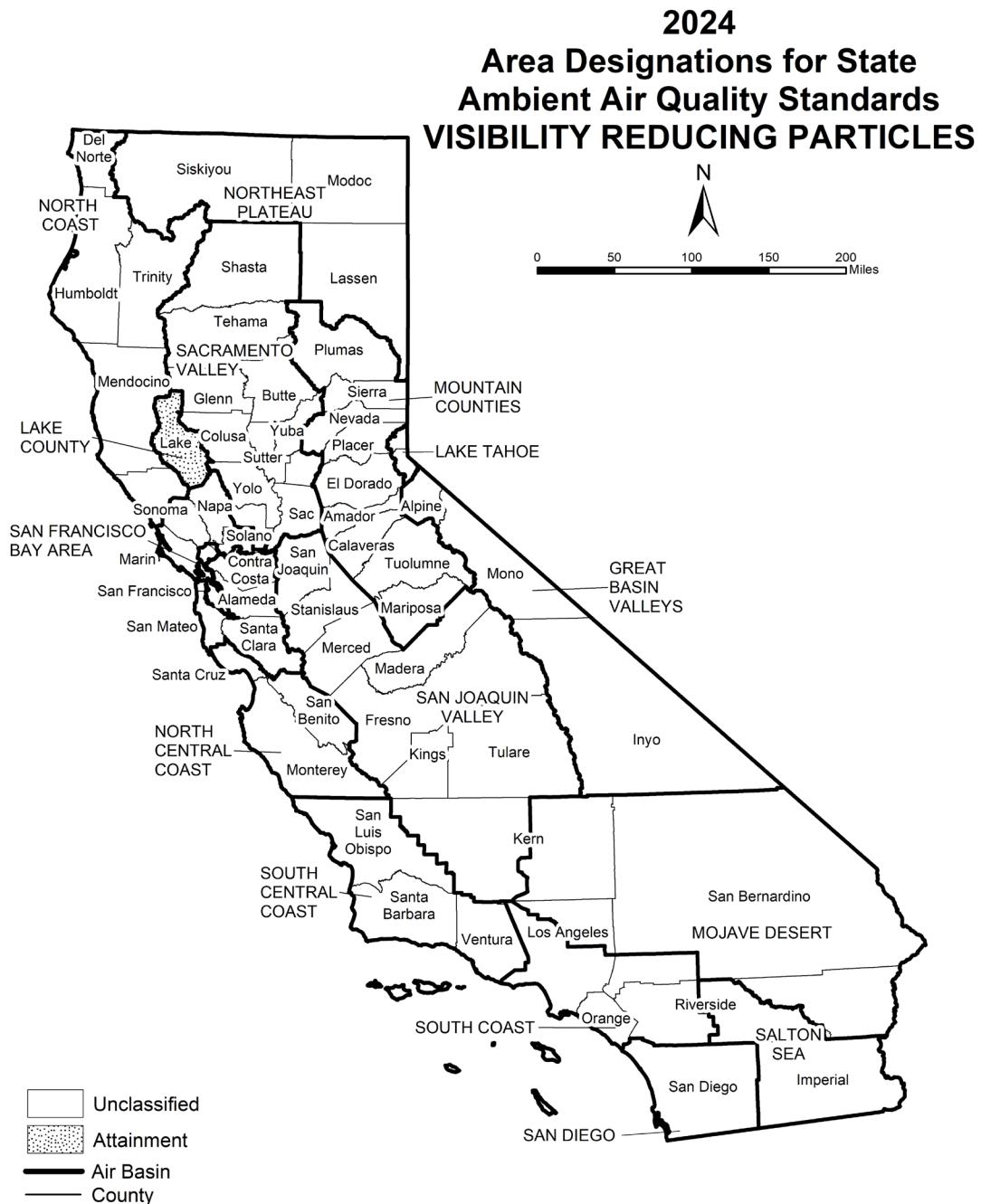

Area	Designations	Area	Designations
GREAT BASIN VALLEYS AIR BASIN		NORTH CENTRAL COAST AIR BASIN	U
Alpine County	U	NORTH COAST AIR BASIN	
Inyo County	A	Del Norte County	U
Mono County	A	Humboldt County	A
LAKE COUNTY AIR BASIN	A	Mendocino County	U
LAKE TAHOE AIR BASIN	U	Sonoma County (portion)	
MOJAVE DESERT AIR BASIN		- Geyser Geothermal Area ⁵	A
Kern County (portion)	U	- Remainder of County	U
Los Angeles County (portion)	U	Trinity County	U
Riverside County (portion)	U	NORTHEAST PLATEAU AIR BASIN	U
San Bernardino County (portion)		SACRAMENTO VALLEY AIR BASIN	U
- Searles Valley Planning Area ⁴	N	SALTON SEA AIR BASIN	
- Remainder of County	U	Riverside County (portion)	N
MOUNTAIN COUNTIES AIR BASIN		Imperial County	U
Amador County		SAN DIEGO AIR BASIN	U
- City of Sutter Creek	N	SAN FRANCISCO BAY AREA AIR BASIN	U
- Remainder of County	U	SAN JOAQUIN VALLEY AIR BASIN	U
Calaveras County	U	SOUTH CENTRAL COAST AIR BASIN	
El Dorado County (portion)	U	San Luis Obispo County	A
Mariposa County	U	Santa Barbara County	A
Nevada County	U	Ventura County	U
Placer County (portion)	U	SOUTH COAST AIR BASIN	U
Plumas County	U		
Sierra County	U		
Tuolumne County	U		

* The area designated for hydrogen sulfide is a county or portion of a county

⁴ 52 Federal Register 29384 (August 7, 1987)

⁵ California Code of Regulations, title 17, section 60200(d)

Figure 9



Last Updated: November 2024
 Air Quality Planning and Science Division, CARB

Table 10
California Ambient Air Quality Standards Area Designations for
Visibility Reducing Particles

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	U
LAKE COUNTY AIR BASIN	A
LAKE TAHOE AIR BASIN	U
MOJAVE DESERT AIR BASIN	U
MOUNTAIN COUNTIES AIR BASIN	U
NORTH CENTRAL COAST AIR BASIN	U
NORTH COAST AIR BASIN	U
NORTHEAST PLATEAU AIR BASIN	U
SACRAMENTO VALLEY AIR BASIN	U
SALTON SEA AIR BASIN	U
SAN DIEGO AIR BASIN	U
SAN FRANCISCO BAY AREA AIR BASIN	U
SAN JOAQUIN VALLEY AIR BASIN	U
SOUTH CENTRAL COAST AIR BASIN	U
SOUTH COAST AIR BASIN	U

Figure 10

Last Updated: November 2024
 Air Quality Planning and Science Division, CARB

Area Designations for the National Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a national ambient air quality standard. These maps reflect all current national standards. For example, the map for Fine Suspended Particulate Matter (PM_{2.5}) reflects both the annual and the 24-hour standard. Additional information about the federal area designations is available on the U.S. EPA website: [Nonattainment Areas for Criteria Pollutants \(Green Book\)](#)

Over the last several years, U.S. EPA has been reviewing the levels of the various national standards. The agency has already promulgated new standard levels for some pollutants and is considering revising the levels for others. Information about the status of these reviews is available on the U.S. EPA website: [Criteria Air Pollutants](#)

On February 7, 2024, the U.S. EPA established a new national annual primary PM_{2.5} standard of 9.0 $\mu\text{g}/\text{m}^3$. Area designations for this revised standard will be finalized in February 2026. Until that time, the current designation map will reflect the most previous 2012 annual average standard of 12.0 $\mu\text{g}/\text{m}^3$ as well as the 24-hour standard of 35 $\mu\text{g}/\text{m}^3$, last revised in 2006.

Designation Categories

Suspended Particulate Matter (PM₁₀). The U.S. EPA uses three categories to designate areas with respect to PM₁₀:

- Attainment (A)
- Nonattainment (N)
- Unclassifiable (U)

Ozone, Fine Suspended Particulate Matter (PM_{2.5}), Carbon Monoxide (CO), Nitrogen Dioxide (NO₂), and Lead. The U.S. EPA uses two categories to designate areas with respect to these standards:

- Nonattainment (N)
- Unclassifiable/Attainment (U/A)

Sulfur Dioxide (SO₂). The U.S. EPA uses three categories to designate areas with respect to the 24-hour and annual average sulfur dioxide standards. These designation categories are:

- Nonattainment (N),
- Unclassifiable (U), and
- Unclassifiable/Attainment (U/A).

Designation Areas

From time to time, the boundaries of the California air basins have been changed to facilitate the planning process. CARB generally initiates these changes, and they are not always reflected in the U.S. EPA's area designations. For purposes of consistency,

the maps in this attachment reflect area designation boundaries and nomenclature as promulgated by the U.S. EPA. In some cases, these may not be the same as those adopted by CARB. For example, the national area designations reflect the former Southeast Desert Air Basin. In accordance with Health and Safety Code section 39606.1, CARB redefined this area in 1996 to be the Mojave Desert Air Basin and Salton Sea Air Basin. The definitions and boundaries for all areas designated for the national standards can be found in Title 40, Code of Federal Regulations (CFR), Chapter I, Subchapter C, Part 81.305. They are available on the web at: *Title 40 SECTION 81.305*.

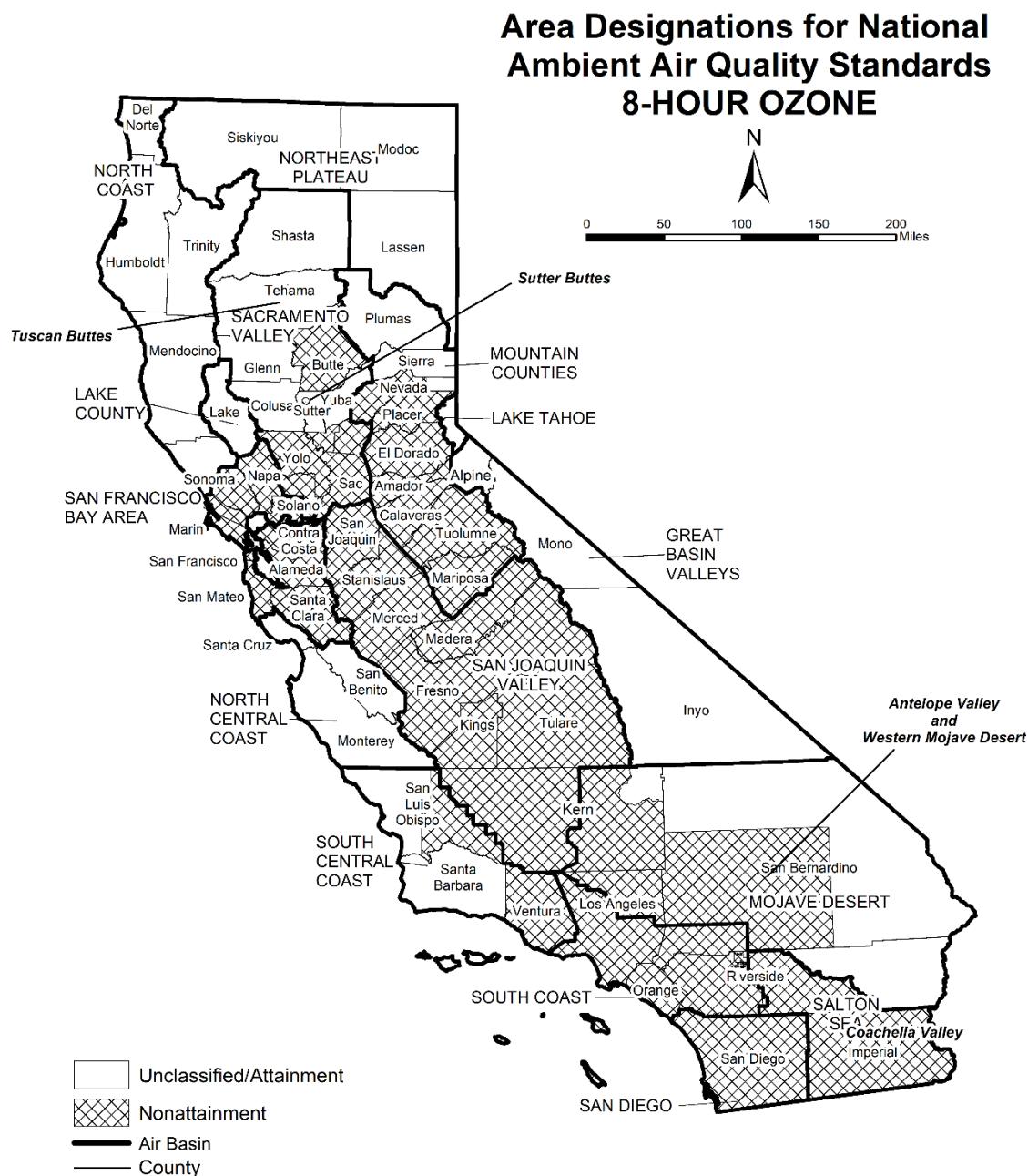
Table 11
National Ambient Air Quality Standards Area Designations for
8-Hour Ozone*

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	U/A
LAKE COUNTY AIR BASIN	U/A
LAKE TAHOE AIR BASIN	U/A
MOUNTAIN COUNTIES AIR BASIN	
Amador County	N
Calaveras County	N
El Dorado County (portion) ⁶	N
Mariposa County	N
Nevada County	
- Western Nevada County	N
- Remainder of County	U/A
Placer County (portion) ⁶	N
Plumas County	U/A
Sierra County	U/A
Tuolumne County	N
NORTH CENTRAL COAST AIR BASIN	U/A
NORTH COAST AIR BASIN	U/A
NORTHEAST PLATEAU AIR BASIN	U/A
SACRAMENTO VALLEY AIR BASIN	
Butte County	N
Colusa County	U/A
Glenn County	U/A
Sacramento Metro Area ⁶	N
Shasta County	U/A
Sutter County	
- Sutter Buttes	N
- Southern portion of Sutter County ⁶	N
- Remainder of Sutter County	U/A
Tehama County	
- Tuscan Buttes	N
- Remainder of Tehama County	U/A

Area	Designations
SACRAMENTO VALLEY AIR BASIN (cont.)	
Yolo County ⁶	N
Yuba County	U/A
SAN DIEGO COUNTY	N
SAN FRANCISCO BAY AREA AIR BASIN	N
SAN JOAQUIN VALLEY AIR BASIN	N
SOUTH CENTRAL COAST AIR BASIN ⁷	
San Luis Obispo County	
- Eastern San Luis Obispo County	N
- Remainder of County	U/A
Santa Barbara County	U/A
Ventura County	
- Area Excluding Anacapa and San Nicolas Islands	N
- Channel Islands ⁷	U/A
SOUTH COAST AIR BASIN ⁷	N
SOUTHEAST DESERT AIR BASIN	
Kern County (portion)	N
- Indian Wells Valley	U/A
Imperial County	N
Los Angeles County (portion)	N
Riverside County (portion)	
- Coachella Valley	N
- Non-AQMA portion	U/A
San Bernardino County	
- Western portion (AQMA)	N
- Eastern portion (non-AQMA)	U/A

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

NOTE: This map and Table reflect the 2015 8-hour ozone standard of 0.070 ppm.


⁶ For this purpose, the Sacramento Metro Area comprises all of Sacramento and Yolo Counties, the Sacramento Valley Air Basin portion of Solano County, the southern portion of Sutter County, and the Sacramento Valley and Mountain Counties Air Basins portions of Placer and El Dorado counties.

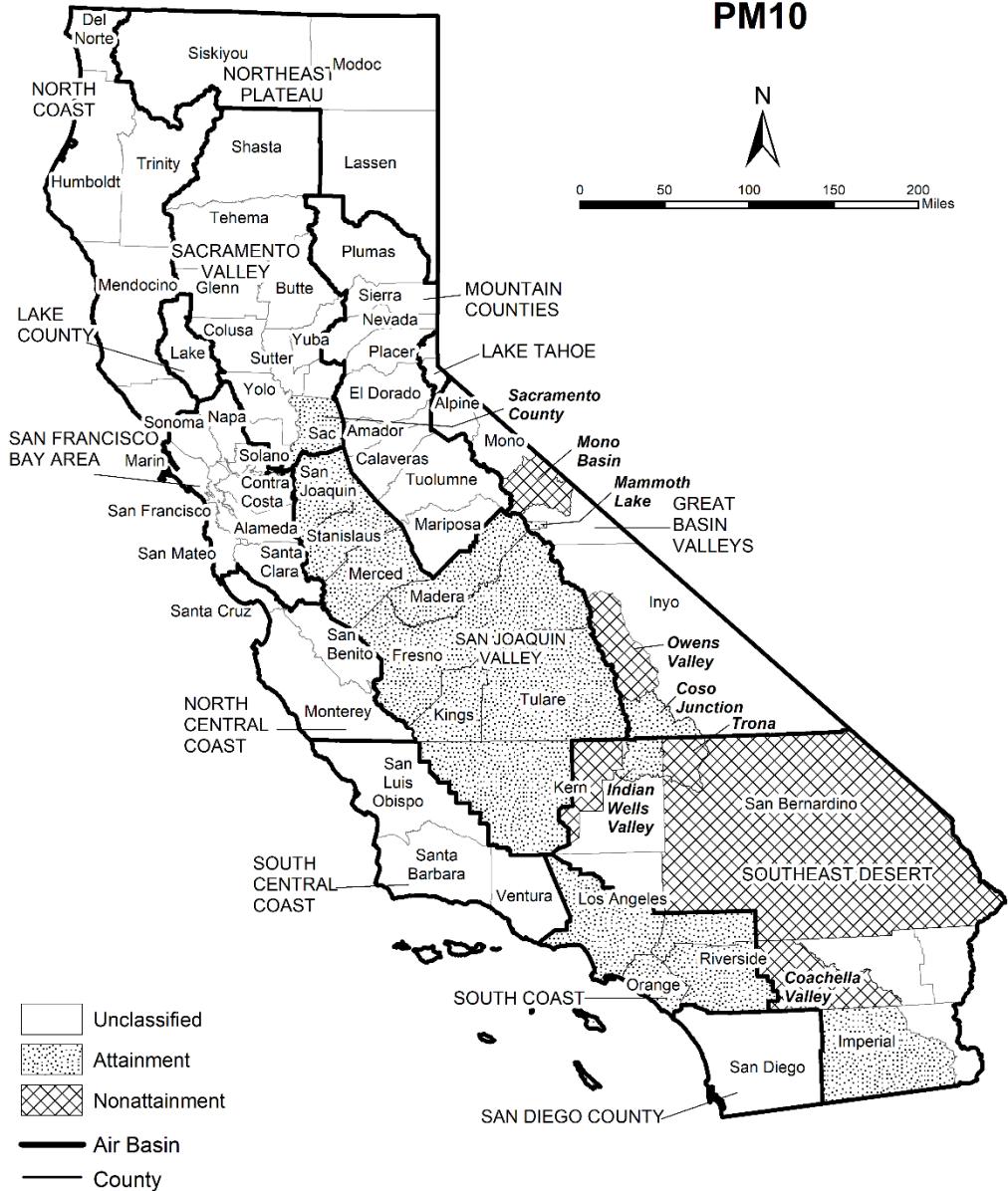
⁷ South Central Coast Air Basin Channel Islands:

Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands. Ventura County includes Anacapa and San Nicolas Islands.

South Coast Air Basin:
 Los Angeles County includes San Clemente and Santa Catalina Islands.

Figure 11

Last Updated: November 2023
 Map reflects the 2015 8-hour ozone standard of 0.070 ppm
 Air Quality Planning and Science Division, CARB


Table 12 National Ambient Air Quality Standards Area Designations for Suspended Particulate Matter (PM₁₀)*

Area	Designations	Area	Designations
GREAT BASIN VALLEYS AIR BASIN		SAN FRANCISCO BAY AREA AIR BASIN	U
Alpine County	U	SAN JOAQUIN VALLEY AIR BASIN	A
Inyo County		SOUTH CENTRAL COAST AIR BASIN	U
- Owens Valley Planning Area	N	SOUTH COAST AIR BASIN	A
- Coso Junction	A	SOUTHEAST DESERT AIR BASIN	
- Remainder of County	U	Eastern Kern County	
Mono County		- Indian Wells Valley	A
- Mammoth Lake Planning Area	A	- Portion within San Joaquin Valley Planning Area	N
- Mono Lake Basin	N	- Remainder of County	U
- Remainder of County	U	Imperial County	
LAKE COUNTY AIR BASIN	U	- Imperial Valley Planning Area	A
LAKE TAHOE AIR BASIN	U	- Remainder of County	U
MOUNTAIN COUNTIES AIR BASIN	U	Los Angeles County (portion)	U
NORTH CENTRAL COAST AIR BASIN	U	Riverside County (portion)	
NORTH COAST AIR BASIN	U	- Coachella Valley	N
NORTHEAST PLATEAU AIR BASIN	U	- Non-AQMA portion	U
SACRAMENTO VALLEY AIR BASIN		San Bernardino County	
Sacramento County	A	- Trona	N
Remainder of Air Basin	U	- Remainder of County	N
SAN DIEGO COUNTY	U		

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

Figure 12

Area Designations for National Ambient Air Quality Standards PM10

Last Updated: November 2023
Air Quality Planning and Science Division

Table 13
National Ambient Air Quality Standards Area Designations for
Fine Particulate Matter (PM_{2.5})

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	U/A
LAKE COUNTY AIR BASIN	U/A
LAKE TAHOE AIR BASIN	U/A
MOUNTAIN COUNTIES AIR BASIN	
Plumas County	
- Portola Valley Portion of Plumas County	N
- Remainder of Plumas County	U/A
Remainder of Air Basin	U/A
NORTH CENTRAL COAST AIR BASIN	U/A
NORTH COAST AIR BASIN	U/A
NORTHEAST PLATEAU AIR BASIN	U/A
SACRAMENTO VALLEY AIR BASIN	
Sacramento Metro Area ⁸	N
Remainder of Air Basin	U/A
SAN DIEGO COUNTY	U/A
SAN FRANCISCO BAY AREA AIR BASIN ⁹	N
SAN JOAQUIN VALLEY AIR BASIN	N
SOUTH CENTRAL COAST AIR BASIN	U/A
SOUTH COAST AIR BASIN ¹⁰	N
SOUTHEAST DESERT AIR BASIN	
Imperial County (portion) ¹¹	N
Remainder of Air Basin	U/A

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

NOTE: This map reflects the 2006 24-hour PM_{2.5} standard as well as the 1997 and 2012 PM_{2.5} annual standards.

⁸ For this purpose, Sacramento Metro Area comprises all of Sacramento and portions of El Dorado, Placer, Solano, and Yolo Counties. Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

⁹ Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

¹⁰ Those lands of the Santa Rosa Band of Cahulla Mission Indians in Riverside County are designated Unclassifiable/Attainment.

¹¹ That portion of Imperial County encompassing the urban and surrounding areas of Brawley, Calexico, El Centro, Heber, Holtville, Imperial, Seeley, and Westmorland. Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

Figure 13

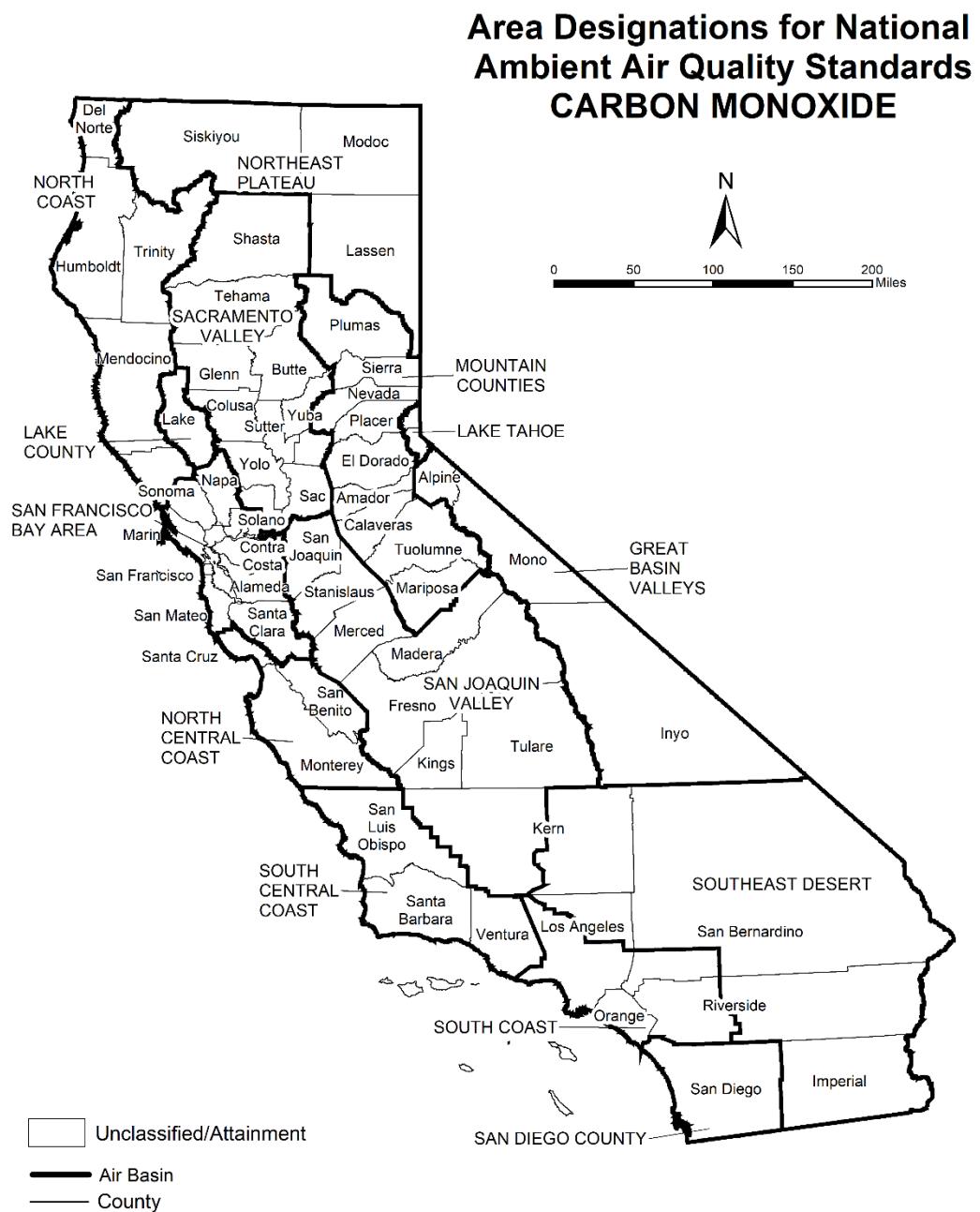

Last Updated: November 2023
Air Quality Planning and Science Division

Table 14**National Ambient Air Quality Standards Area Designations for Carbon Monoxide***

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	U/A
LAKE COUNTY AIR BASIN	U/A
LAKE TAHOE AIR BASIN	U/A
MOUNTAIN COUNTIES AIR BASIN	U/A
NORTH CENTRAL COAST AIR BASIN	U/A
NORTH COAST AIR BASIN	U/A
NORTHEAST PLATEAU AIR BASIN	U/A
SACRAMENTO VALLEY AIR BASIN	U/A
SAN DIEGO COUNTY	U/A
SAN FRANCISCO BAY AREA AIR BASIN	U/A
SAN JOAQUIN VALLEY AIR BASIN	U/A
SOUTH CENTRAL COAST AIR BASIN	U/A
SOUTH COAST AIR BASIN	U/A
SOUTHEAST DESERT AIR BASIN	U/A

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

Figure 14

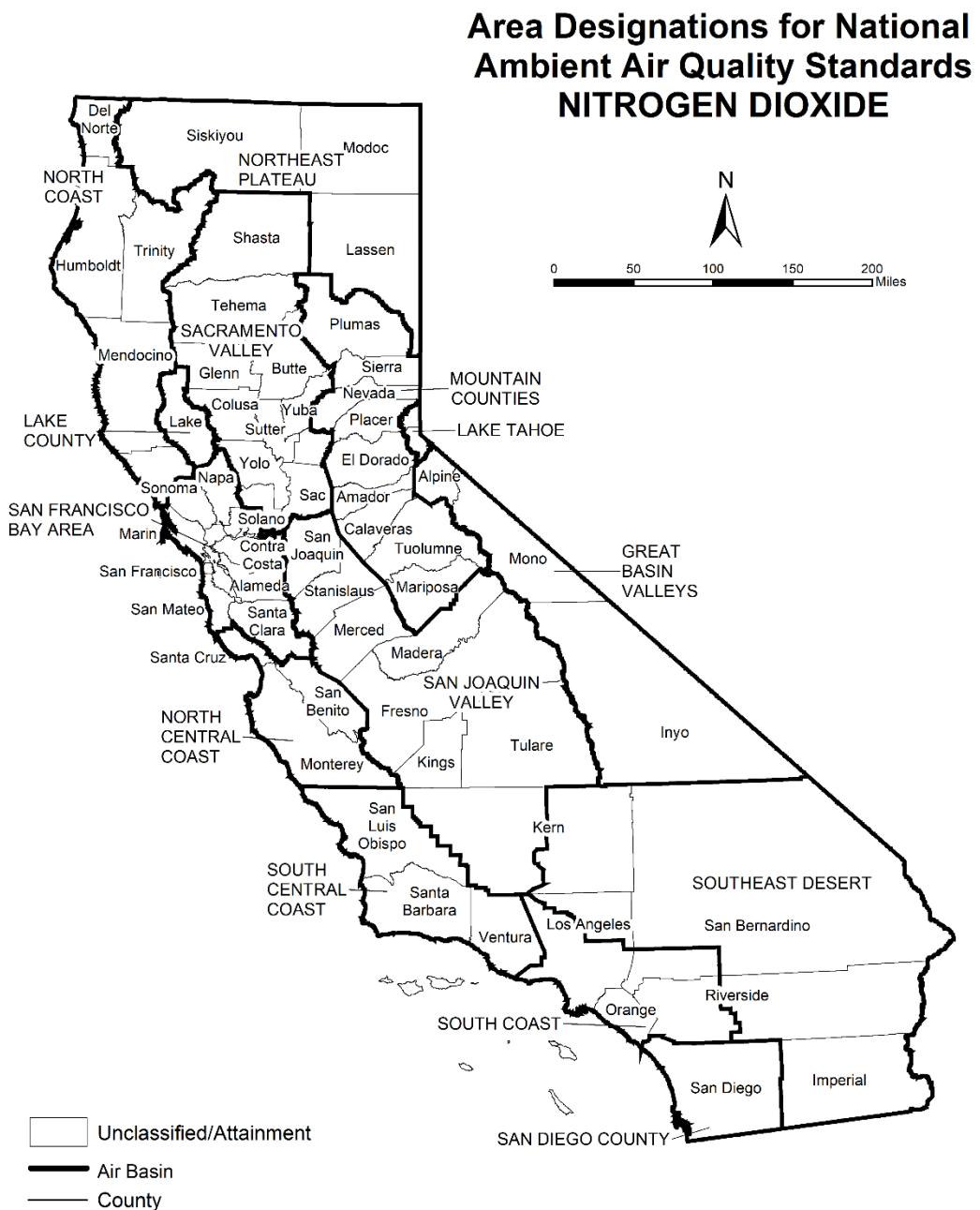

Last Updated: November 2023
Air Quality Planning and Science Division

Table 15**National Ambient Air Quality Standards Area Designations for Nitrogen Dioxide***

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	U/A
LAKE COUNTY AIR BASIN	U/A
LAKE TAHOE AIR BASIN	U/A
MOUNTAIN COUNTIES AIR BASIN	U/A
NORTH CENTRAL COAST AIR BASIN	U/A
NORTH COAST AIR BASIN	U/A
NORTHEAST PLATEAU AIR BASIN	U/A
SACRAMENTO VALLEY AIR BASIN	U/A
SAN DIEGO COUNTY	U/A
SAN FRANCISCO BAY AREA AIR BASIN	U/A
SAN JOAQUIN VALLEY AIR BASIN	U/A
SOUTH CENTRAL COAST AIR BASIN	U/A
SOUTH COAST AIR BASIN	U/A
SOUTHEAST DESERT AIR BASIN	U/A

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

Figure 15

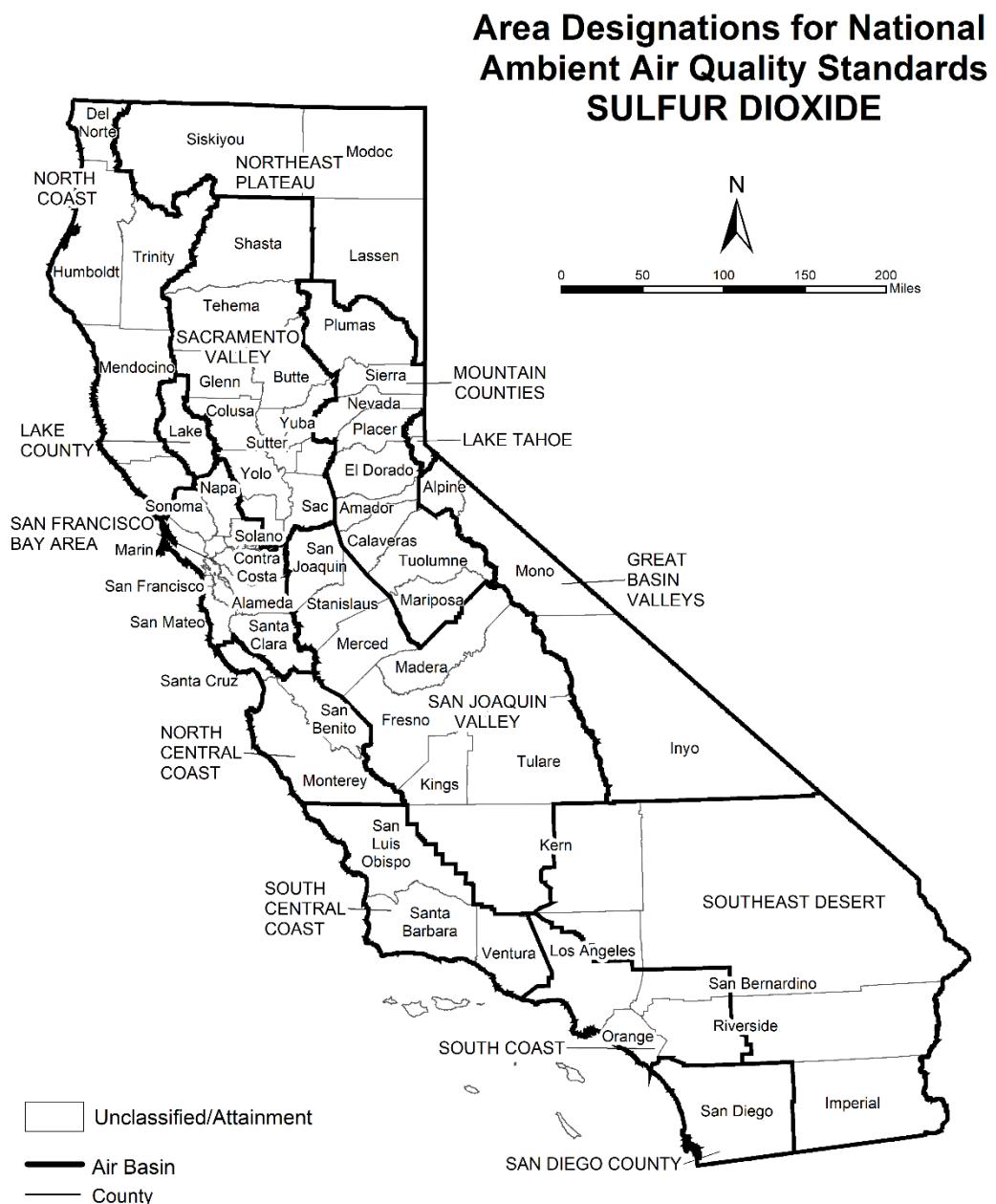
Last Updated: November 2023
Air Quality Planning and Science Division

Table 16
National Ambient Air Quality Standards Area Designations for
Sulfur Dioxide*

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	U/A
LAKE COUNTY AIR BASIN	U/A
LAKE TAHOE AIR BASIN	U/A
MOUNTAIN COUNTIES AIR BASIN	U/A
NORTH CENTRAL COAST AIR BASIN	U/A
NORTH COAST AIR BASIN	U/A
NORTHEAST PLATEAU AIR BASIN	U/A
SACRAMENTO VALLEY AIR BASIN	U/A
SAN DIEGO COUNTY	U/A
SAN FRANCISCO BAY AREA AIR BASIN	U/A
SAN JOAQUIN VALLEY AIR BASIN	U/A
SOUTH CENTRAL COAST AIR BASIN ¹²	U/A
SOUTH COAST AIR BASIN	U/A
SOUTHEAST DESERT AIR BASIN	U/A

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

NOTE: This map and table reflect the 2010 1-hour SO₂ standard of 75 ppb.


¹² South Central Coast Air Basin Channel Islands:

Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands.

Ventura County includes Anacapa and San Nicolas Islands.

Note that the San Clemente and Santa Catalina Islands are considered part of Los Angeles County, and therefore, are included as part of the South Coast Air Basin.

Figure 16

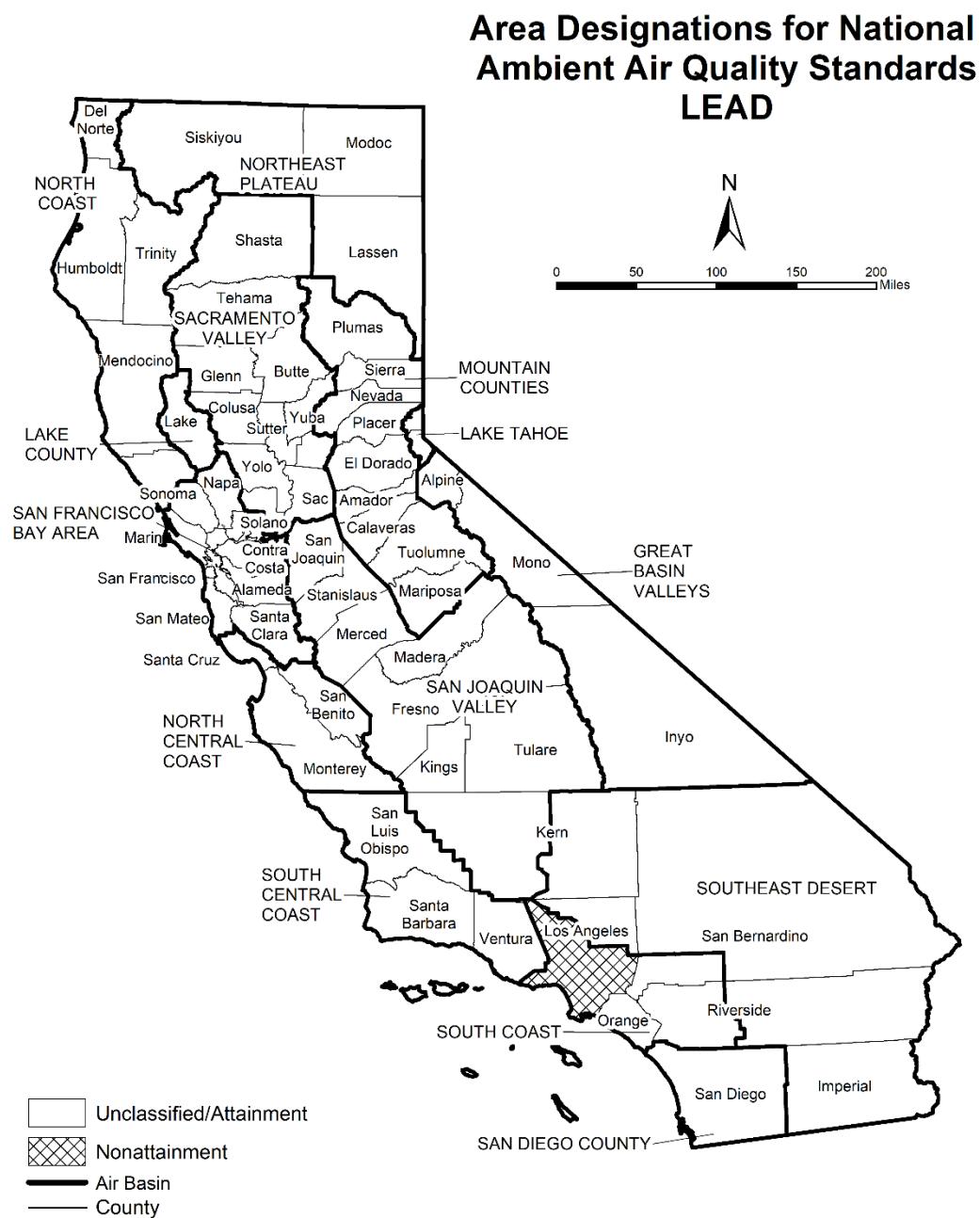

Last Updated: November 2023
Air Quality Planning and Science Division

Table 17
National Ambient Air Quality Standards Area Designations for
Lead (particulate)

Area	Designations
GREAT BASIN VALLEYS AIR BASIN	U/A
LAKE COUNTY AIR BASIN	U/A
LAKE TAHOE AIR BASIN	U/A
MOUNTAIN COUNTIES AIR BASIN	U/A
NORTH CENTRAL COAST AIR BASIN	U/A
NORTH COAST AIR BASIN	U/A
NORTHEAST PLATEAU AIR BASIN	U/A
SACRAMENTO VALLEY AIR BASIN	U/A
SAN DIEGO COUNTY	U/A
SAN FRANCISCO BAY AREA AIR BASIN	U/A
SAN JOAQUIN VALLEY AIR BASIN	U/A
SOUTH CENTRAL COAST AIR BASIN	U/A
SOUTH COAST AIR BASIN	
Los Angeles County (portion) ¹³	N
Remainder of Air Basin	U/A
SOUTHEAST DESERT AIR BASIN	U/A

¹³ Portion of County in Air Basin, not including Channel Islands

Figure 17

Last Updated: November 2023
Air Quality Planning and Science Division

This page intentionally left blank

APPENDIX 3.1:

CALEEMOD CONSTRUCTION AND OPERATIONS EMISSIONS MODEL OUTPUTS

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report

Table of Contents

1. Basic Project Information

1.1. Basic Project Information

1.2. Land Use Types

1.3. User-Selected Emission Reduction Measures by Emissions Sector

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

2.2. Construction Emissions by Year, Unmitigated

2.4. Operations Emissions Compared Against Thresholds

2.5. Operations Emissions by Sector, Unmitigated

3. Construction Emissions Details

3.1. Demolition (2026) - Unmitigated

3.3. Site Preparation (2026) - Unmitigated

3.5. Site Preparation (2027) - Unmitigated

3.7. Grading (2027) - Unmitigated

3.9. Building Construction (2027) - Unmitigated

3.11. Building Construction (2028) - Unmitigated

3.13. Paving (2028) - Unmitigated

3.15. Architectural Coating (2028) - Unmitigated

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

4.3. Area Emissions by Source

4.3.1. Unmitigated

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

5. Activity Data

5.1. Construction Schedule

5.2. Off-Road Equipment

5.2.1. Unmitigated

5.3. Construction Vehicles

5.3.1. Unmitigated

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

5.5. Architectural Coatings

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

5.6.2. Construction Earthmoving Control Strategies

5.7. Construction Paving

5.8. Construction Electricity Consumption and Emissions Factors

5.9. Operational Mobile Sources

5.9.1. Unmitigated

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

5.10.3. Landscape Equipment

5.11. Operational Energy Consumption

5.11.1. Unmitigated

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

5.13. Operational Waste Generation

5.13.1. Unmitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

7.2. Healthy Places Index Scores

7.3. Overall Health & Equity Scores

7.4. Health & Equity Measures

7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	16408 - Bell Mountain Commerce Center Construction and Operations
Construction Start Date	12/1/2026
Operational Year	2028
Lead Agency	—
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	5.00
Precipitation (days)	12.4
Location	34.594764, -117.244659
County	San Bernardino-Mojave Desert
City	Apple Valley
Air District	Mojave Desert AQMD
Air Basin	Mojave Desert
TAZ	5160
EDFZ	10
Electric Utility	Southern California Edison
Gas Utility	Southwest Gas Corp.
App Version	2022.1.1.30

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
General Heavy Industry	138	1000sqft	3.17	138,141	84,424	—	—	General Light Industrial

Refrigerated Warehouse-Rail	207	1000sqft	4.76	207,212	126,637	—	—	High-Cube Cold Storage PC
Unrefrigerated Warehouse-No Rail	1,036	1000sqft	23.8	1,036,059	633,185	—	—	High-Cube Fulfillment (Non-Sort)
Parking Lot	1,426	Space	15.7	0.00	0.00	—	—	—
Other Asphalt Surfaces	45.3	Acre	45.3	0.00	0.00	—	—	—
User Defined Industrial	1,381	User Defined Unit	0.00	0.00	0.00	—	—	PC Trips

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	148	148	22.9	65.6	0.08	0.61	9.04	9.65	0.57	2.18	2.75	—	17,172	17,172	0.26	0.99	37.4	17,511
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	148	148	64.7	64.2	0.16	2.81	9.04	9.65	2.59	2.22	4.81	—	18,408	18,408	0.68	1.01	0.97	18,537
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	22.6	22.3	21.9	39.8	0.07	0.72	5.99	6.72	0.67	1.54	2.21	—	11,687	11,687	0.25	0.62	9.39	11,887
Annual (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Unmit.	4.12	4.07	4.00	7.26	0.01	0.13	1.09	1.23	0.12	0.28	0.40	—	1,935	1,935	0.04	0.10	1.55	1,968
--------	------	------	------	------	------	------	------	------	------	------	------	---	-------	-------	------	------	------	-------

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2027	5.16	4.50	22.9	65.6	0.08	0.61	9.04	9.65	0.57	2.18	2.75	—	17,172	17,172	0.26	0.99	37.4	17,511
2028	148	148	21.8	62.6	0.08	0.55	9.04	9.59	0.52	2.18	2.70	—	16,884	16,884	0.26	0.99	33.4	17,219
Daily - Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2026	3.22	2.71	24.3	22.3	0.04	1.24	4.09	5.32	1.14	1.86	3.00	—	4,337	4,337	0.16	0.09	0.04	4,368
2027	8.93	7.51	64.7	64.2	0.16	2.81	9.04	9.65	2.59	2.22	4.81	—	18,408	18,408	0.68	1.01	0.97	18,537
2028	148	148	22.3	49.9	0.08	0.55	9.04	9.59	0.52	2.18	2.70	—	15,977	15,977	0.27	0.99	0.87	16,280
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2026	0.15	0.13	1.16	1.07	< 0.005	0.06	0.20	0.25	0.05	0.09	0.14	—	209	209	0.01	< 0.005	0.04	211
2027	3.95	3.38	21.9	39.8	0.07	0.72	5.99	6.72	0.67	1.54	2.21	—	11,687	11,687	0.25	0.62	9.39	11,887
2028	22.6	22.3	13.2	30.1	0.04	0.34	4.78	5.12	0.31	1.15	1.47	—	8,826	8,826	0.15	0.52	7.67	8,993
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2026	0.03	0.02	0.21	0.19	< 0.005	0.01	0.04	0.05	0.01	0.02	0.03	—	34.7	34.7	< 0.005	< 0.005	0.01	34.9
2027	0.72	0.62	4.00	7.26	0.01	0.13	1.09	1.23	0.12	0.28	0.40	—	1,935	1,935	0.04	0.10	1.55	1,968
2028	4.12	4.07	2.40	5.49	0.01	0.06	0.87	0.93	0.06	0.21	0.27	—	1,461	1,461	0.03	0.09	1.27	1,489

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
---------	-----	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	---	------

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	57.3	55.0	92.4	199	1.10	2.27	54.1	56.3	2.15	14.1	16.2	1,334	127,444	128,778	137	14.7	526	137,123
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	45.7	44.2	96.7	111	1.07	2.16	54.1	56.2	2.07	14.1	16.2	1,334	124,538	125,873	137	14.8	232	133,939
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	46.2	44.8	69.2	114	0.79	1.49	39.2	40.7	1.41	10.2	11.6	1,334	94,485	95,819	137	11.3	319	102,916
Annual (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	8.43	8.18	12.6	20.7	0.14	0.27	7.16	7.43	0.26	1.87	2.12	221	15,643	15,864	22.7	1.86	52.9	17,039

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Mobile	13.1	11.7	87.3	135	1.09	1.92	54.1	56.0	1.83	14.1	15.9	—	113,879	113,879	1.01	13.1	301	118,104
Area	42.4	41.6	0.51	60.1	< 0.005	0.11	—	0.11	0.08	—	0.08	—	247	247	0.01	< 0.005	—	248
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	10,659	10,659	1.02	0.12	—	10,721
Water	—	—	—	—	—	—	—	—	—	—	—	612	1,820	2,432	62.9	1.51	—	4,456
Waste	—	—	—	—	—	—	—	—	—	—	—	722	0.00	722	72.2	0.00	—	2,527
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	224	224
Stationary	1.80	1.64	4.59	4.18	0.01	0.24	0.00	0.24	0.24	0.00	0.24	0.00	840	840	0.03	0.01	0.00	842
Total	57.3	55.0	92.4	199	1.10	2.27	54.1	56.3	2.15	14.1	16.2	1,334	127,444	128,778	137	14.7	526	137,123

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	12.2	10.9	92.1	107	1.07	1.92	54.1	56.0	1.83	14.1	15.9	—	111,220	111,220	1.04	13.1	7.82	115,169
Area	31.7	31.7	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	10,659	10,659	1.02	0.12	—	10,721
Water	—	—	—	—	—	—	—	—	—	—	—	612	1,820	2,432	62.9	1.51	—	4,456
Waste	—	—	—	—	—	—	—	—	—	—	—	722	0.00	722	72.2	0.00	—	2,527
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	224	224
Stationary	1.80	1.64	4.59	4.18	0.01	0.24	0.00	0.24	0.24	0.00	0.24	0.00	840	840	0.03	0.01	0.00	842
Total	45.7	44.2	96.7	111	1.07	2.16	54.1	56.2	2.07	14.1	16.2	1,334	124,538	125,873	137	14.8	232	133,939
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	8.96	8.00	68.3	83.5	0.78	1.40	39.2	40.6	1.34	10.2	11.6	—	81,769	81,769	0.77	9.62	95.2	84,751
Area	37.0	36.6	0.25	29.6	< 0.005	0.05	—	0.05	0.04	—	0.04	—	122	122	0.01	< 0.005	—	122
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	10,659	10,659	1.02	0.12	—	10,721
Water	—	—	—	—	—	—	—	—	—	—	—	612	1,820	2,432	62.9	1.51	—	4,456
Waste	—	—	—	—	—	—	—	—	—	—	—	722	0.00	722	72.2	0.00	—	2,527
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	224	224
Stationary	0.25	0.22	0.63	0.57	< 0.005	0.03	0.00	0.03	0.03	0.00	0.03	0.00	115	115	< 0.005	< 0.005	0.00	115
Total	46.2	44.8	69.2	114	0.79	1.49	39.2	40.7	1.41	10.2	11.6	1,334	94,485	95,819	137	11.3	319	102,916
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	1.64	1.46	12.5	15.2	0.14	0.26	7.16	7.42	0.24	1.87	2.11	—	13,538	13,538	0.13	1.59	15.8	14,031
Area	6.75	6.68	0.05	5.41	< 0.005	0.01	—	0.01	0.01	—	0.01	—	20.2	20.2	< 0.005	< 0.005	—	20.2
Energy	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	1,765	1,765	0.17	0.02	—	1,775
Water	—	—	—	—	—	—	—	—	—	—	—	101	301	403	10.4	0.25	—	738
Waste	—	—	—	—	—	—	—	—	—	—	—	120	0.00	120	11.9	0.00	—	418
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	37.1	37.1

Stationa	0.05	0.04	0.11	0.10	< 0.005	0.01	0.00	0.01	0.01	0.00	0.01	0.00	19.0	19.0	< 0.005	< 0.005	0.00	19.1
Total	8.43	8.18	12.6	20.7	0.14	0.27	7.16	7.43	0.26	1.87	2.12	221	15,643	15,864	22.7	1.86	52.9	17,039

3. Construction Emissions Details

3.1. Demolition (2026) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.11	0.09	0.82	1.02	< 0.005	0.02	—	0.02	0.02	—	0.02	—	142	142	0.01	< 0.005	—	142
Demolition	—	—	—	—	—	—	0.22	0.22	—	0.03	0.03	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	1.94	1.94	< 0.005	< 0.005	—	1.95
Demolition	—	—	—	—	—	—	< 0.005	< 0.005	—	< 0.005	< 0.005	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Off-Roa Equipment	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.32	0.32	< 0.005	< 0.005	—	0.32
Demoliti on	—	—	—	—	—	—	< 0.005	< 0.005	—	< 0.005	< 0.005	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.13	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	31.6	31.6	< 0.005	< 0.005	< 0.005	32.0
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	—	62.5	62.5	< 0.005	0.01	< 0.005	65.1
Hauling	< 0.005	< 0.005	0.19	0.04	< 0.005	< 0.005	0.04	0.05	< 0.005	0.01	0.01	—	160	160	< 0.005	0.03	0.01	168
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.45	0.45	< 0.005	< 0.005	< 0.005	0.45
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.86	0.86	< 0.005	< 0.005	< 0.005	0.89
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.20	2.20	< 0.005	< 0.005	< 0.005	2.30
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.07	0.07	< 0.005	< 0.005	< 0.005	0.07
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.14	0.14	< 0.005	< 0.005	< 0.005	0.15
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.36	0.36	< 0.005	< 0.005	< 0.005	0.38

3.3. Site Preparation (2026) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	3.15	2.65	23.9	21.5	0.04	1.23	—	1.23	1.13	—	1.13	—	3,804	3,804	0.15	0.03	—	3,817
Dust From Material Movement	—	—	—	—	—	—	3.82	3.82	—	1.80	1.80	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.15	0.12	1.12	1.01	< 0.005	0.06	—	0.06	0.05	—	0.05	—	179	179	0.01	< 0.005	—	179
Dust From Material Movement	—	—	—	—	—	—	0.18	0.18	—	0.08	0.08	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.03	0.02	0.20	0.18	< 0.005	0.01	—	0.01	0.01	—	0.01	—	29.6	29.6	< 0.005	< 0.005	—	29.7
Dust From Material Movement	—	—	—	—	—	—	0.03	0.03	—	0.02	0.02	—	—	—	—	—	—	

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.05	0.06	0.64	0.00	0.00	0.16	0.16	0.00	0.04	0.04	—	158	158	< 0.005	0.01	0.02	160
Vendor	0.01	0.01	0.40	0.16	< 0.005	0.01	0.10	0.11	0.01	0.03	0.03	—	375	375	< 0.005	0.05	0.02	391
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	7.65	7.65	< 0.005	< 0.005	0.01	7.75
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	17.6	17.6	< 0.005	< 0.005	0.02	18.3
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	1.27	1.27	< 0.005	< 0.005	< 0.005	1.28
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.92	2.92	< 0.005	< 0.005	< 0.005	3.04
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Site Preparation (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Off-Road Equipment	2.99	2.51	22.6	21.1	0.04	1.13	—	1.13	1.04	—	1.04	—	3,805	3,805	0.15	0.03	—	3,818
Dust From Material Movement	—	—	—	—	—	—	3.82	3.82	—	1.80	1.80	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.08	0.06	0.57	0.54	< 0.005	0.03	—	0.03	0.03	—	0.03	—	96.8	96.8	< 0.005	< 0.005	—	97.1
Dust From Material Movement	—	—	—	—	—	—	0.10	0.10	—	0.05	0.05	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.01	0.01	0.10	0.10	< 0.005	0.01	—	0.01	< 0.005	—	< 0.005	—	16.0	16.0	< 0.005	< 0.005	—	16.1
Dust From Material Movement	—	—	—	—	—	—	0.02	0.02	—	0.01	0.01	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.05	0.05	0.60	0.00	0.00	0.16	0.16	0.00	0.04	0.04	—	156	156	< 0.005	0.01	0.01	157
Vendor	0.01	0.01	0.38	0.16	< 0.005	0.01	0.10	0.11	0.01	0.03	0.03	—	367	367	< 0.005	0.05	0.02	382
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	4.07	4.07	< 0.005	< 0.005	0.01	4.13
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	9.33	9.33	< 0.005	< 0.005	0.01	9.71
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.67	0.67	< 0.005	< 0.005	< 0.005	0.68
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	1.54	1.54	< 0.005	< 0.005	< 0.005	1.61
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Grading (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	8.72	7.33	62.8	62.1	0.15	2.78	—	2.78	2.56	—	2.56	—	16,443	16,443	0.67	0.13	—	16,500

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Dust From Material Movement	—	—	—	—	—	—	5.75	5.75	—	2.00	2.00	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.08	0.90	7.75	7.65	0.02	0.34	—	0.34	0.32	—	0.32	—	2,027	2,027	0.08	0.02	—	2,034
Dust From Material Movement	—	—	—	—	—	—	0.71	0.71	—	0.25	0.25	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.20	0.16	1.41	1.40	< 0.005	0.06	—	0.06	0.06	—	0.06	—	336	336	0.01	< 0.005	—	337
Dust From Material Movement	—	—	—	—	—	—	0.13	0.13	—	0.05	0.05	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.16	0.14	0.15	1.68	0.00	0.00	0.46	0.46	0.00	0.11	0.11	—	436	436	0.01	0.02	0.04	441

Vendor	0.02	0.02	0.64	0.26	< 0.005	0.01	0.17	0.18	0.01	0.05	0.06	—	612	612	< 0.005	0.08	0.04	636
Hauling	0.02	0.02	1.08	0.24	0.01	0.02	0.25	0.27	0.02	0.07	0.08	—	917	917	< 0.005	0.15	0.05	961
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.02	0.02	0.02	0.23	0.00	0.00	0.06	0.06	0.00	0.01	0.01	—	55.3	55.3	< 0.005	< 0.005	0.08	56.0
Vendor	< 0.005	< 0.005	0.08	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	75.4	75.4	< 0.005	0.01	0.07	78.4
Hauling	< 0.005	< 0.005	0.13	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	—	113	113	< 0.005	0.02	0.10	118
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	9.15	9.15	< 0.005	< 0.005	0.01	9.27
Vendor	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	12.5	12.5	< 0.005	< 0.005	0.01	13.0
Hauling	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	18.7	18.7	< 0.005	< 0.005	0.02	19.6

3.9. Building Construction (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	2.03	1.70	15.5	22.1	0.04	0.54	—	0.54	0.49	—	0.49	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	2.03	1.70	15.5	22.1	0.04	0.54	—	0.54	0.49	—	0.49	—	3,827	3,827	0.16	0.03	—	3,840

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.15	0.96	8.74	12.5	0.02	0.30	—	0.30	0.28	—	0.28	—	2,164	2,164	0.09	0.02	—	2,172
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.21	0.17	1.59	2.28	< 0.005	0.06	—	0.06	0.05	—	0.05	—	358	358	0.01	< 0.005	—	360
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	2.91	2.63	2.29	41.4	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	8,153	8,153	0.09	0.28	25.4	8,262
Vendor	0.23	0.17	5.13	2.14	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,193	5,193	0.01	0.68	12.0	5,409
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	2.65	2.37	2.55	27.8	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,221	7,221	0.12	0.29	0.66	7,310
Vendor	0.20	0.15	5.41	2.22	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,199	5,199	0.01	0.69	0.31	5,405
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	1.50	1.34	1.58	17.6	0.00	0.00	4.25	4.25	0.00	1.00	1.00	—	4,204	4,204	0.07	0.16	6.20	4,260
Vendor	0.12	0.09	3.06	1.24	0.02	0.04	0.82	0.86	0.04	0.23	0.27	—	2,939	2,939	0.01	0.39	2.92	3,057

3.11. Building Construction (2028) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.95	1.63	14.8	22.1	0.04	0.48	—	0.48	0.44	—	0.44	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.95	1.63	14.8	22.1	0.04	0.48	—	0.48	0.44	—	0.44	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.98	0.82	7.43	11.1	0.02	0.24	—	0.24	0.22	—	0.22	—	1,925	1,925	0.08	0.02	—	1,931

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.18	0.15	1.36	2.03	< 0.005	0.04	—	0.04	0.04	—	0.04	—	319	319	0.01	< 0.005	—	320	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	2.82	2.55	2.03	38.5	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,998	7,998	0.09	0.28	22.8	8,105	
Vendor	0.22	0.16	4.96	2.04	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,059	5,059	0.01	0.68	10.6	5,274	
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	2.32	2.26	2.29	25.8	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,085	7,085	0.10	0.28	0.59	7,170	
Vendor	0.20	0.15	5.24	2.08	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,065	5,065	0.01	0.68	0.27	5,269	
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	1.18	1.15	1.28	14.5	0.00	0.00	3.78	3.78	0.00	0.89	0.89	—	3,668	3,668	0.05	0.14	4.97	3,715	
Vendor	0.11	0.08	2.62	1.03	0.02	0.04	0.73	0.77	0.04	0.20	0.24	—	2,546	2,546	0.01	0.34	2.30	2,651	
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.21	0.21	0.23	2.65	0.00	0.00	0.69	0.69	0.00	0.16	0.16	—	607	607	0.01	0.02	0.82	615	
Vendor	0.02	0.01	0.48	0.19	< 0.005	0.01	0.13	0.14	0.01	0.04	0.04	—	421	421	< 0.005	0.06	0.38	439	
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Paving (2028) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.22	1.03	9.94	14.9	0.02	0.38	—	0.38	0.35	—	0.35	—	2,267	2,267	0.09	0.02	—	2,274
Paving	3.20	3.20	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.22	1.03	9.94	14.9	0.02	0.38	—	0.38	0.35	—	0.35	—	2,267	2,267	0.09	0.02	—	2,274
Paving	3.20	3.20	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.17	0.14	1.36	2.04	< 0.005	0.05	—	0.05	0.05	—	0.05	—	310	310	0.01	< 0.005	—	312
Paving	0.44	0.44	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Off-Roa Equipment	0.03	0.03	0.25	0.37	< 0.005	0.01	—	0.01	0.01	—	0.01	—	51.4	51.4	< 0.005	< 0.005	—	51.6
Paving	0.08	0.08	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.11	0.10	0.08	1.49	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	310	310	< 0.005	0.01	0.89	314
Vendor	0.01	0.01	0.32	0.13	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	327	327	< 0.005	0.04	0.69	341
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.09	0.09	0.09	1.00	0.00	0.00	0.29	0.29	0.00	0.07	0.07	—	275	275	< 0.005	0.01	0.02	278
Vendor	0.01	0.01	0.34	0.13	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	328	328	< 0.005	0.04	0.02	341
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.01	0.01	0.01	0.15	0.00	0.00	0.04	0.04	0.00	0.01	0.01	—	38.7	38.7	< 0.005	< 0.005	0.05	39.2
Vendor	< 0.005	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	44.9	44.9	< 0.005	0.01	0.04	46.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	6.41	6.41	< 0.005	< 0.005	0.01	6.50
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	7.43	7.43	< 0.005	< 0.005	0.01	7.73
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	

3.15. Architectural Coating (2028) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
----------	-----	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	---	------

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.01	0.05	0.07	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	8.07	8.07	< 0.005	< 0.005	—	8.10
Architectural Coatings	3.57	3.57	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.56	0.51	0.41	7.70	0.00	0.00	1.52	1.52	0.00	0.36	0.36	—	1,600	1,600	0.02	0.06	4.57	1,621
Vendor	0.01	0.01	0.32	0.13	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	327	327	< 0.005	0.04	0.69	341
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.46	0.45	0.46	5.16	0.00	0.00	1.52	1.52	0.00	0.36	0.36	—	1,417	1,417	0.02	0.06	0.12	1,434
Vendor	0.01	0.01	0.34	0.13	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	328	328	< 0.005	0.04	0.02	341
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.06	0.07	0.79	0.00	0.00	0.21	0.21	0.00	0.05	0.05	—	200	200	< 0.005	0.01	0.27	202
Vendor	< 0.005	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	44.9	44.9	< 0.005	0.01	0.04	46.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.14	0.00	0.00	0.04	0.04	0.00	0.01	0.01	—	33.1	33.1	< 0.005	< 0.005	0.04	33.5

Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	7.43	7.43	< 0.005	< 0.005	0.01	7.73
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
General Heavy Industry	0.15	0.13	5.26	1.30	0.06	0.12	1.94	2.06	0.11	0.52	0.63	—	5,945	5,945	0.01	0.84	14.9	6,209
Refrigerated Warehouse-Rail	0.88	0.74	24.1	8.26	0.23	0.53	9.00	9.52	0.50	2.41	2.91	—	24,409	24,409	0.07	3.38	74.3	25,491
Unrefrigerated Warehouse-No Rail	1.50	1.24	52.6	12.8	0.56	1.18	19.2	20.4	1.13	5.13	6.26	—	58,867	58,867	0.13	8.32	147	61,496
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
User Defined Industrial	10.5	9.64	5.29	112	0.24	0.09	23.9	24.0	0.09	6.02	6.11	—	24,658	24,658	0.81	0.55	65.4	24,909
Total	13.1	11.7	87.3	135	1.09	1.92	54.1	56.0	1.83	14.1	15.9	—	113,879	113,879	1.01	13.1	301	118,104

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
General Heavy Industry	0.15	0.12	5.54	1.29	0.06	0.12	1.94	2.06	0.11	0.52	0.63	—	5,946	5,946	0.01	0.84	0.39	6,196
Refrigerated Warehouse-Rail	0.86	0.72	25.4	8.19	0.23	0.53	9.00	9.52	0.50	2.41	2.91	—	24,414	24,414	0.06	3.38	1.93	25,425
Unrefrigerated Warehouse-No Rail	1.45	1.20	55.3	12.8	0.56	1.18	19.2	20.4	1.13	5.13	6.26	—	58,881	58,881	0.12	8.33	3.81	61,370
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
User Defined Industrial	9.72	8.83	5.87	84.4	0.22	0.09	23.9	24.0	0.09	6.02	6.11	—	21,978	21,978	0.84	0.59	1.70	22,177
Total	12.2	10.9	92.1	107	1.07	1.92	54.1	56.0	1.83	14.1	15.9	—	111,220	111,220	1.04	13.1	7.82	115,169
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
General Heavy Industry	0.02	0.02	0.75	0.17	0.01	0.02	0.26	0.27	0.02	0.07	0.08	—	720	720	< 0.005	0.10	0.78	751
Refrigerated Warehouse-Rail	0.12	0.10	3.43	1.09	0.03	0.07	1.19	1.26	0.07	0.32	0.39	—	2,955	2,955	0.01	0.41	3.89	3,081
Unrefrigerated Warehouse-No Rail	0.20	0.16	7.47	1.69	0.07	0.16	2.55	2.71	0.15	0.68	0.83	—	7,128	7,128	0.02	1.01	7.67	7,437

Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
User Defined Industrial	1.30	1.18	0.82	12.3	0.03	0.01	3.16	3.18	0.01	0.80	0.81	—	2,735	2,735	0.10	0.07	3.42	2,763
Total	1.64	1.46	12.5	15.2	0.14	0.26	7.16	7.42	0.24	1.87	2.11	—	13,538	13,538	0.13	1.59	15.8	14,031

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	1,250	1,250	0.12	0.01	—	1,257	
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	4,303	4,303	0.41	0.05	—	4,328	
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	—	—	4,539	4,539	0.43	0.05	—	4,565	
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	568	568	0.05	0.01	—	571	
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	—	10,659	10,659	1.02	0.12	—	10,721
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	—	1,250	1,250	0.12	0.01	—	1,257
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	—	4,303	4,303	0.41	0.05	—	4,328
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	—	—	—	4,539	4,539	0.43	0.05	—	4,565
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	—	568	568	0.05	0.01	—	571
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	—	10,659	10,659	1.02	0.12	—	10,721
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	—	207	207	0.02	< 0.005	—	208
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	—	712	712	0.07	0.01	—	717

Unrefrigerated	—	—	—	—	—	—	—	—	—	—	—	—	751	751	0.07	0.01	—	756
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	—	94.0	94.0	0.01	< 0.005	—	94.5
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	—	1,765	1,765	0.17	0.02	—	1,775

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
General Heavy Industry	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00	
Refrigerated Warehouse-Rail	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00	
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Refrigerated Warehouse-Rail	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Refrigerated Warehouse-Rail	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00

Unrefrigerated	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	0.00	—	0.00

4.3. Area Emissions by Source

4.3.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Source	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	29.8	29.8	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	1.96	1.96	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Landscape Equipment	10.7	9.87	0.51	60.1	< 0.005	0.11	—	0.11	0.08	—	0.08	—	247	247	0.01	< 0.005	—	248
Total	42.4	41.6	0.51	60.1	< 0.005	0.11	—	0.11	0.08	—	0.08	—	247	247	0.01	< 0.005	—	248

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	29.8	29.8	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	1.96	1.96	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	31.7	31.7	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	5.43	5.43	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	0.36	0.36	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Landscape Equipment	0.96	0.89	0.05	5.41	< 0.005	0.01	—	0.01	0.01	—	0.01	—	20.2	20.2	< 0.005	< 0.005	—	20.2
Total	6.75	6.68	0.05	5.41	< 0.005	0.01	—	0.01	0.01	—	0.01	—	20.2	20.2	< 0.005	< 0.005	—	20.2

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	61.2	182	243	6.29	0.15	—	446
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	91.8	273	365	9.44	0.23	—	668
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	—	—	459	1,365	1,824	47.2	1.13	—	3,342
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	612	1,820	2,432	62.9	1.51	—	4,456
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	61.2	182	243	6.29	0.15	—	446
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	91.8	273	365	9.44	0.23	—	668
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	—	—	459	1,365	1,824	47.2	1.13	—	3,342
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00

Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	612	1,820	2,432	62.9	1.51	—	4,456
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	10.1	30.1	40.3	1.04	0.03	—	73.8
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	15.2	45.2	60.4	1.56	0.04	—	111
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	—	76.0	226	302	7.82	0.19	—	553
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	101	301	403	10.4	0.25	—	738

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	92.3	0.00	92.3	9.23	0.00	—	323
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	105	0.00	105	10.5	0.00	—	367
Unrefrigerated Warehouse-No Rail	—	—	—	—	—	—	—	—	—	—	—	525	0.00	525	52.5	0.00	—	1,836
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	722	0.00	722	72.2	0.00	—	2,527
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	92.3	0.00	92.3	9.23	0.00	—	323
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	105	0.00	105	10.5	0.00	—	367

16408 - Bell Mountain Commerce Center Construction and Operations Detailed Report, 9/9/2025

Unrefrigerated Warehouses-Rail	—	—	—	—	—	—	—	—	—	—	—	525	0.00	525	52.5	0.00	—	1,836
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	722	0.00	722	72.2	0.00	—	2,527
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	15.3	0.00	15.3	1.53	0.00	—	53.5
Refrigerated Warehouses-Rail	—	—	—	—	—	—	—	—	—	—	—	17.4	0.00	17.4	1.74	0.00	—	60.8
Unrefrigerated Warehouses-No Rail	—	—	—	—	—	—	—	—	—	—	—	86.9	0.00	86.9	8.69	0.00	—	304
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
User Defined Industrial	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	120	0.00	120	11.9	0.00	—	418

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	211	211
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	12.9	12.9
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	224	224
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	211	211
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	12.9	12.9
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	224	224
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Refrigerated Warehouse-Rail	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	35.0	35.0
General Heavy Industry	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2.14	2.14

Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	37.1	37.1
-------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	------	------

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Fire Pump	0.54	0.49	1.38	1.26	< 0.005	0.07	0.00	0.07	0.07	0.00	0.07	0.00	252	252	0.01	< 0.005	0.00	253

Emergency	1.26	1.15	3.21	2.93	0.01	0.17	0.00	0.17	0.17	0.00	0.17	0.00	588	588	0.02	< 0.005	0.00	590
Total	1.80	1.64	4.59	4.18	0.01	0.24	0.00	0.24	0.24	0.00	0.24	0.00	840	840	0.03	0.01	0.00	842
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Fire Pump	0.54	0.49	1.38	1.26	< 0.005	0.07	0.00	0.07	0.07	0.00	0.07	0.00	252	252	0.01	< 0.005	0.00	253
Emergency Generator	1.26	1.15	3.21	2.93	0.01	0.17	0.00	0.17	0.17	0.00	0.17	0.00	588	588	0.02	< 0.005	0.00	590
Total	1.80	1.64	4.59	4.18	0.01	0.24	0.00	0.24	0.24	0.00	0.24	0.00	840	840	0.03	0.01	0.00	842
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Fire Pump	0.01	0.01	0.03	0.03	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	0.00	5.71	5.71	< 0.005	< 0.005	0.00	5.73
Emergency Generator	0.03	0.03	0.08	0.07	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.00	< 0.005	0.00	13.3	13.3	< 0.005	< 0.005	0.00	13.4
Total	0.05	0.04	0.11	0.10	< 0.005	0.01	0.00	0.01	0.01	0.00	0.01	0.00	19.0	19.0	< 0.005	< 0.005	0.00	19.1

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	12/1/2026	12/7/2026	5.00	5.00	—
Site Preparation	Site Preparation	12/8/2026	1/13/2027	5.00	27.0	—
Grading	Grading	1/14/2027	3/17/2027	5.00	45.0	—
Building Construction	Building Construction	3/18/2027	9/13/2028	5.00	390	—
Paving	Paving	9/14/2028	11/22/2028	5.00	50.0	—
Architectural Coating	Architectural Coating	9/14/2028	11/22/2028	5.00	50.0	—

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
------------	----------------	-----------	-------------	----------------	---------------	------------	-------------

Demolition	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Site Preparation	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Site Preparation	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43
Grading	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	2.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Grading	Scrapers	Diesel	Average	6.00	8.00	423	0.48
Grading	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43
Building Construction	Cranes	Diesel	Average	1.00	8.00	367	0.29
Building Construction	Forklifts	Diesel	Average	5.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	2.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Back hoes	Diesel	Average	5.00	8.00	84.0	0.37
Building Construction	Welders	Diesel	Average	2.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	3.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	3.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	3.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	2.00	8.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	—	—
Demolition	Worker	2.50	18.5	LDA,LDT1,LDT2
Demolition	Vendor	2.00	10.2	HHDT,MHDT
Demolition	Hauling	2.40	20.0	HHDT
Demolition	Onsite truck	—	—	HHDT
Site Preparation	—	—	—	—

Site Preparation	Worker	12.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	12.0	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	—	—	HHDT
Grading	—	—	—	—
Grading	Worker	35.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	20.0	10.2	HHDT,MHDT
Grading	Hauling	14.0	20.0	HHDT
Grading	Onsite truck	—	—	HHDT
Building Construction	—	—	—	—
Building Construction	Worker	580	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	170	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	—	—	HHDT
Paving	—	—	—	—
Paving	Worker	22.5	18.5	LDA,LDT1,LDT2
Paving	Vendor	11.0	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	—	—	HHDT
Architectural Coating	—	—	—	—
Architectural Coating	Worker	116	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	11.0	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	—	—	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	2,072,118	690,706	159,456

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (Building Square Footage)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	1,040	—
Site Preparation	—	—	67.5	0.00	—
Grading	5,056	—	428	0.00	—
Paving	0.00	0.00	0.00	0.00	61.0

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
General Heavy Industry	0.00	0%
Refrigerated Warehouse-Rail	0.00	0%
Unrefrigerated Warehouse-No Rail	0.00	0%
Parking Lot	15.7	100%
Other Asphalt Surfaces	45.3	100%
User Defined Industrial	0.00	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2026	0.00	346	0.03	< 0.005
2027	0.00	346	0.03	< 0.005
2028	0.00	346	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
General Heavy Industry	36.1	3.04	1.24	9,623	2,239	189	77.2	597,607
Refrigerated Warehouse-Rail	166	14.1	5.59	44,299	10,307	875	347	2,750,966
Unrefrigerated Warehouse-No Rail	356	30.0	12.4	95,135	22,133	1,866	772	5,907,861
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
User Defined Industrial	2,241	189	76.0	597,999	34,506	2,915	1,170	9,209,191

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	2,072,118	690,706	159,456

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBtu/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBtu/yr)
General Heavy Industry	1,317,551	346	0.0330	0.0040	0.00
Refrigerated Warehouse-Rail	4,536,998	346	0.0330	0.0040	0.00
Unrefrigerated Warehouse-No Rail	4,785,249	346	0.0330	0.0040	0.00
Parking Lot	598,326	346	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	346	0.0330	0.0040	0.00
User Defined Industrial	0.00	346	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
General Heavy Industry	31,945,106	1,869,024
Refrigerated Warehouse-Rail	47,917,775	2,803,558
Unrefrigerated Warehouse-No Rail	239,588,644	14,017,789

Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00
User Defined Industrial	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
General Heavy Industry	171	—
Refrigerated Warehouse-Rail	195	—
Unrefrigerated Warehouse-No Rail	974	—
Parking Lot	0.00	—
Other Asphalt Surfaces	0.00	—
User Defined Industrial	0.00	—

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Refrigerated Warehouse-Rail	Cold storage	User Defined	150	7.50	7.50	7.50	25.0
General Heavy Industry	Other commercial A/C and heat pumps	User Defined	750	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
----------------	-----------	-------------	----------------	---------------	------------	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
Fire Pump	Diesel	1.00	1.00	50.0	300	0.73
Emergency Generator	Diesel	1.00	1.00	50.0	700	0.73

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
----------------	-----------

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	34.1	annual days of extreme heat
Extreme Precipitation	0.90	annual days with precipitation above 20 mm
Sea Level Rise	—	meters of inundation depth
Wildfire	0.80	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	5	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A

Flooding	N/A	N/A	N/A	N/A
Drought	0	0	0	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	5	1	1	4
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	1	1	1	2
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	—
AQ-Ozone	80.0
AQ-PM	7.52
AQ-DPM	21.9
Drinking Water	34.9
Lead Risk Housing	27.7
Pesticides	0.00
Toxic Releases	37.1
Traffic	59.7
Effect Indicators	—
CleanUp Sites	52.1
Groundwater	44.8
Haz Waste Facilities/Generators	16.6
Impaired Water Bodies	51.2
Solid Waste	84.7
Sensitive Population	—
Asthma	88.0
Cardio-vascular	89.5
Low Birth Weights	91.9
Socioeconomic Factor Indicators	—
Education	26.9
Housing	11.6
Linguistic	—
Poverty	52.5
Unemployment	90.6

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	—
Above Poverty	44.97626075
Employed	30.46323624
Median HI	35.0442705
Education	—
Bachelor's or higher	42.93596818
High school enrollment	100
Preschool enrollment	39.79212113
Transportation	—
Auto Access	85.40998332
Active commuting	24.00872578
Social	—
2-parent households	51.18696266
Voting	75.34967278
Neighborhood	—
Alcohol availability	88.37418196
Park access	16.65597331
Retail density	8.469138971
Supermarket access	2.399589375
Tree canopy	0.71859361
Housing	—
Homeownership	62.60746824
Housing habitability	64.39112024
Low-inc homeowner severe housing cost burden	17.8108559
Low-inc renter severe housing cost burden	77.19748492

Uncrowded housing	68.66418581
Health Outcomes	—
Insured adults	64.22430386
Arthritis	4.4
Asthma ER Admissions	7.6
High Blood Pressure	8.9
Cancer (excluding skin)	9.1
Asthma	30.0
Coronary Heart Disease	6.8
Chronic Obstructive Pulmonary Disease	13.3
Diagnosed Diabetes	35.6
Life Expectancy at Birth	34.2
Cognitively Disabled	41.3
Physically Disabled	11.3
Heart Attack ER Admissions	2.7
Mental Health Not Good	48.5
Chronic Kidney Disease	20.1
Obesity	46.5
Pedestrian Injuries	48.3
Physical Health Not Good	39.9
Stroke	15.1
Health Risk Behaviors	—
Binge Drinking	57.0
Current Smoker	46.7
No Leisure Time for Physical Activity	58.0
Climate Change Exposures	—
Wildfire Risk	0.0
SLR Inundation Area	0.0

Children	58.1
Elderly	16.8
English Speaking	81.5
Foreign-born	11.0
Outdoor Workers	47.0
Climate Change Adaptive Capacity	—
Impervious Surface Cover	90.2
Traffic Density	37.9
Traffic Access	23.0
Other Indices	—
Hardship	32.7
Other Decision Support	—
2016 Voting	75.3

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	65.0
Healthy Places Index Score for Project Location (b)	46.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Based on 2028 OY and provided construction start and end dates. (end of 2026 and 2028, respectivley)
Land Use	Taken from site plan
Construction: Off-Road Equipment	Project applicant provided equipment list as well as CalEEMod defaults.
Construction: Trips and VMT	"CalEEMod only assumes Vendor Trips during Building Construction. The CalEEMod default trips were ratioed between each phase based on the number of days."
Operations: Energy Use	Natural gas will not be utilized
Operations: Vehicle Data	Trip information taken from Traffic Analysis.
Operations: Fleet Mix	Passenger Car Mix estimated based on CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, MCY). Truck Fleet Mix based on 2, 3 and 4 axle trucks
Operations: Refrigerants	As of 1 January 2022, new commercial refrigeration equipment may not use refrigerants with a GWP of 150 or greater. Beginning 1 January 2025, all new air conditioning equipment may not use refrigerants with a GWP of 750 or greater
Construction: Architectural Coatings	—

TRU Emissions

2028	Year
San Bernardino (MD)	Region

Transport Refrigeration Unit - Instate Trailer

45	No. of Units
4	Hours/day

Total Two-Way TRU Trips per day

166

Transport Refrigeration Unit - Instate Truck

38	No. of Units
4	Hours/day

	Activity (hrs/year)
Transport Refrigeration Unit - Instate Trailer	2,340,232
Transport Refrigeration Unit - Instate Truck	95,610

Unit	Emission Factor							
	ROG	NO _x	CO	SO _x	PM ₁₀	PM _{2.5}	CO ₂	
Transport Refrigeration Unit - Instate Trailer	Emissions (tons/day)	2.71E-01	2.24E-01	3.44E-02	0.00E+00	4.06E-03	3.73E-03	5.07E+01
	Emissions (lbs/hr)	8.44E-02	6.98E-02	1.07E-02	0.00E+00	1.27E-03	1.16E-03	1.58E+01
Transport Refrigeration Unit - Instate Truck	Emissions (tons/day)	8.06E-03	1.02E-02	8.77E-04	0.00E+00	5.24E-04	4.82E-04	1.63E+00
	Emissions (lbs/hr)	6.15E-02	7.77E-02	6.69E-03	0.00E+00	4.00E-03	3.68E-03	1.24E+01

Unit	Emissions (lbs/day)						MT/yr
	ROG	NO _x	CO	SO _x	PM ₁₀	PM _{2.5}	
Transport Refrigeration Unit - Instate Trailer	15.19	12.56	1.93	0.00	0.23	0.21	471.44
Transport Refrigeration Unit - Instate Truck	9.35	11.81	1.02	0.00	0.61	0.56	312.89
Total	24.54	24.37	2.95	0.00	0.84	0.77	784.33

This page intentionally left blank

APPENDIX 3.2:

CALEEMOD CONSTRUCTION MITIGATED EMISSIONS MODEL OUTPUTS

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report

Table of Contents

1. Basic Project Information

1.1. Basic Project Information

1.2. Land Use Types

1.3. User-Selected Emission Reduction Measures by Emissions Sector

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

2.2. Construction Emissions by Year, Unmitigated

2.3. Construction Emissions by Year, Mitigated

3. Construction Emissions Details

3.1. Demolition (2026) - Unmitigated

3.2. Demolition (2026) - Mitigated

3.3. Site Preparation (2026) - Unmitigated

3.4. Site Preparation (2026) - Mitigated

3.5. Site Preparation (2027) - Unmitigated

- 3.6. Site Preparation (2027) - Mitigated
- 3.7. Grading (2027) - Unmitigated
- 3.8. Grading (2027) - Mitigated
- 3.9. Building Construction (2027) - Unmitigated
- 3.10. Building Construction (2027) - Mitigated
- 3.11. Building Construction (2028) - Unmitigated
- 3.12. Building Construction (2028) - Mitigated
- 3.13. Paving (2028) - Unmitigated
- 3.14. Paving (2028) - Mitigated
- 3.15. Architectural Coating (2028) - Unmitigated
- 3.16. Architectural Coating (2028) - Mitigated

4. Operations Emissions Details

- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

5. Activity Data

5.1. Construction Schedule

5.2. Off-Road Equipment

5.2.1. Unmitigated

5.2.2. Mitigated

5.3. Construction Vehicles

5.3.1. Unmitigated

5.3.2. Mitigated

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

5.5. Architectural Coatings

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

5.6.2. Construction Earthmoving Control Strategies

5.7. Construction Paving

5.8. Construction Electricity Consumption and Emissions Factors

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

5.18.2.2. Mitigated

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

7.2. Healthy Places Index Scores

7.3. Overall Health & Equity Scores

7.4. Health & Equity Measures

7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	16408 - Bell Mountain Commerce Center Construction Mitigated
Construction Start Date	12/1/2026
Lead Agency	—
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	5.00
Precipitation (days)	12.4
Location	34.594764, -117.244659
County	San Bernardino-Mojave Desert
City	Apple Valley
Air District	Mojave Desert AQMD
Air Basin	Mojave Desert
TAZ	5160
EDFZ	10
Electric Utility	Southern California Edison
Gas Utility	Southwest Gas Corp.
App Version	2022.1.1.30

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
General Heavy Industry	138	1000sqft	3.17	138,141	84,424	—	—	General Light Industrial

Refrigerated Warehouse-Rail	207	1000sqft	4.76	207,212	126,637	—	—	High-Cube Cold Storage PC
Unrefrigerated Warehouse-No Rail	1,036	1000sqft	23.8	1,036,059	633,185	—	—	High-Cube Fulfillment (Non-Sort)
Parking Lot	1,426	Space	15.7	0.00	0.00	—	—	—
Other Asphalt Surfaces	45.3	Acre	45.3	0.00	0.00	—	—	—
User Defined Industrial	1,381	User Defined Unit	0.00	0.00	0.00	—	—	PC Trips

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-13	Use Low-VOC Paints for Construction

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Unmit.	148	148	22.9	65.6	0.08	0.61	9.04	9.65	0.57	2.18	2.75	—	17,172	17,172	0.26	0.99	37.4	17,511
Mit.	45.9	45.5	22.9	65.6	0.08	0.61	9.04	9.65	0.57	2.18	2.75	—	17,172	17,172	0.26	0.99	37.4	17,511
% Reduced	69%	69%	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Unmit.	148	148	64.7	64.2	0.16	2.81	9.04	9.65	2.59	2.22	4.81	—	18,408	18,408	0.68	1.01	0.97	18,537

Mit.	45.7	45.5	64.7	64.2	0.16	2.81	9.04	9.65	2.59	2.22	4.81	—	18,408	18,408	0.68	1.01	0.97	18,537
% Reduced	69%	69%	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Unmit.	22.6	22.3	21.9	39.8	0.07	0.72	5.99	6.72	0.67	1.54	2.21	—	11,687	11,687	0.25	0.62	9.39	11,887
Mit.	8.53	8.28	21.9	39.8	0.07	0.72	5.99	6.72	0.67	1.54	2.21	—	11,687	11,687	0.25	0.62	9.39	11,887
% Reduced	62%	63%	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Annual (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Unmit.	4.12	4.07	4.00	7.26	0.01	0.13	1.09	1.23	0.12	0.28	0.40	—	1,935	1,935	0.04	0.10	1.55	1,968
Mit.	1.56	1.51	4.00	7.26	0.01	0.13	1.09	1.23	0.12	0.28	0.40	—	1,935	1,935	0.04	0.10	1.55	1,968
% Reduced	62%	63%	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2027	5.16	4.50	22.9	65.6	0.08	0.61	9.04	9.65	0.57	2.18	2.75	—	17,172	17,172	0.26	0.99	37.4	17,511
2028	148	148	21.8	62.6	0.08	0.55	9.04	9.59	0.52	2.18	2.70	—	16,884	16,884	0.26	0.99	33.4	17,219
Daily - Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2026	3.22	2.71	24.3	22.3	0.04	1.24	4.09	5.32	1.14	1.86	3.00	—	4,337	4,337	0.16	0.09	0.04	4,368
2027	8.93	7.51	64.7	64.2	0.16	2.81	9.04	9.65	2.59	2.22	4.81	—	18,408	18,408	0.68	1.01	0.97	18,537
2028	148	148	22.3	49.9	0.08	0.55	9.04	9.59	0.52	2.18	2.70	—	15,977	15,977	0.27	0.99	0.87	16,280

Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
2026	0.15	0.13	1.16	1.07	< 0.005	0.06	0.20	0.25	0.05	0.09	0.14	—	209	209	0.01	< 0.005	0.04	211
2027	3.95	3.38	21.9	39.8	0.07	0.72	5.99	6.72	0.67	1.54	2.21	—	11,687	11,687	0.25	0.62	9.39	11,887
2028	22.6	22.3	13.2	30.1	0.04	0.34	4.78	5.12	0.31	1.15	1.47	—	8,826	8,826	0.15	0.52	7.67	8,993
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
2026	0.03	0.02	0.21	0.19	< 0.005	0.01	0.04	0.05	0.01	0.02	0.03	—	34.7	34.7	< 0.005	< 0.005	0.01	34.9
2027	0.72	0.62	4.00	7.26	0.01	0.13	1.09	1.23	0.12	0.28	0.40	—	1,935	1,935	0.04	0.10	1.55	1,968
2028	4.12	4.07	2.40	5.49	0.01	0.06	0.87	0.93	0.06	0.21	0.27	—	1,461	1,461	0.03	0.09	1.27	1,489

2.3. Construction Emissions by Year, Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
2027	5.16	4.50	22.9	65.6	0.08	0.61	9.04	9.65	0.57	2.18	2.75	—	17,172	17,172	0.26	0.99	37.4	17,511
2028	45.9	45.5	21.8	62.6	0.08	0.55	9.04	9.59	0.52	2.18	2.70	—	16,884	16,884	0.26	0.99	33.4	17,219
Daily - Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
2026	3.22	2.71	24.3	22.3	0.04	1.24	4.09	5.32	1.14	1.86	3.00	—	4,337	4,337	0.16	0.09	0.04	4,368
2027	8.93	7.51	64.7	64.2	0.16	2.81	9.04	9.65	2.59	2.22	4.81	—	18,408	18,408	0.68	1.01	0.97	18,537
2028	45.7	45.5	22.3	49.9	0.08	0.55	9.04	9.59	0.52	2.18	2.70	—	15,977	15,977	0.27	0.99	0.87	16,280
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
2026	0.15	0.13	1.16	1.07	< 0.005	0.06	0.20	0.25	0.05	0.09	0.14	—	209	209	0.01	< 0.005	0.04	211
2027	3.95	3.38	21.9	39.8	0.07	0.72	5.99	6.72	0.67	1.54	2.21	—	11,687	11,687	0.25	0.62	9.39	11,887
2028	8.53	8.28	13.2	30.1	0.04	0.34	4.78	5.12	0.31	1.15	1.47	—	8,826	8,826	0.15	0.52	7.67	8,993
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

2026	0.03	0.02	0.21	0.19	< 0.005	0.01	0.04	0.05	0.01	0.02	0.03	—	34.7	34.7	< 0.005	< 0.005	0.01	34.9
2027	0.72	0.62	4.00	7.26	0.01	0.13	1.09	1.23	0.12	0.28	0.40	—	1,935	1,935	0.04	0.10	1.55	1,968
2028	1.56	1.51	2.40	5.49	0.01	0.06	0.87	0.93	0.06	0.21	0.27	—	1,461	1,461	0.03	0.09	1.27	1,489

3. Construction Emissions Details

3.1. Demolition (2026) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.11	0.09	0.82	1.02	< 0.005	0.02	—	0.02	0.02	—	0.02	—	142	142	0.01	< 0.005	—	142
Demolition	—	—	—	—	—	—	0.22	0.22	—	0.03	0.03	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	1.94	1.94	< 0.005	< 0.005	—	1.95
Demolition	—	—	—	—	—	—	< 0.005	< 0.005	—	< 0.005	< 0.005	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	

Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.32	0.32	< 0.005	< 0.005	—	0.32
Demolition	—	—	—	—	—	—	< 0.005	< 0.005	—	< 0.005	< 0.005	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.13	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	31.6	31.6	< 0.005	< 0.005	< 0.005	32.0
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	—	62.5	62.5	< 0.005	0.01	< 0.005	65.1
Hauling	< 0.005	< 0.005	0.19	0.04	< 0.005	< 0.005	0.04	0.05	< 0.005	0.01	0.01	—	160	160	< 0.005	0.03	0.01	168
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.45	0.45	< 0.005	< 0.005	< 0.005	0.45
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.86	0.86	< 0.005	< 0.005	< 0.005	0.89
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.20	2.20	< 0.005	< 0.005	< 0.005	2.30
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.07	0.07	< 0.005	< 0.005	< 0.005	0.07
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.14	0.14	< 0.005	< 0.005	< 0.005	0.15
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.36	0.36	< 0.005	< 0.005	< 0.005	0.38

3.2. Demolition (2026) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
----------	-----	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	---	------

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.13	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	31.6	31.6	< 0.005	< 0.005	< 0.005	32.0
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	—	62.5	62.5	< 0.005	0.01	< 0.005	65.1
Hauling	< 0.005	< 0.005	0.19	0.04	< 0.005	< 0.005	0.04	0.05	< 0.005	0.01	0.01	—	160	160	< 0.005	0.03	0.01	168
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.45	0.45	< 0.005	< 0.005	< 0.005	0.45
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.86	0.86	< 0.005	< 0.005	< 0.005	0.89
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.20	2.20	< 0.005	< 0.005	< 0.005	2.30
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.07	0.07	< 0.005	< 0.005	< 0.005	0.07
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.14	0.14	< 0.005	< 0.005	< 0.005	0.15
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	0.36	0.36	< 0.005	< 0.005	< 0.005	0.38

3.3. Site Preparation (2026) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Off-Road Equipment	3.15	2.65	23.9	21.5	0.04	1.23	—	1.23	1.13	—	1.13	—	3,804	3,804	0.15	0.03	—	3,817
Dust From Material Movement	—	—	—	—	—	—	3.82	3.82	—	1.80	1.80	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.15	0.12	1.12	1.01	< 0.005	0.06	—	0.06	0.05	—	0.05	—	179	179	0.01	< 0.005	—	179
Dust From Material Movement	—	—	—	—	—	—	0.18	0.18	—	0.08	0.08	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.03	0.02	0.20	0.18	< 0.005	0.01	—	0.01	0.01	—	0.01	—	29.6	29.6	< 0.005	< 0.005	—	29.7
Dust From Material Movement	—	—	—	—	—	—	0.03	0.03	—	0.02	0.02	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.05	0.06	0.64	0.00	0.00	0.16	0.16	0.00	0.04	0.04	—	158	158	< 0.005	0.01	0.02	160
Vendor	0.01	0.01	0.40	0.16	< 0.005	0.01	0.10	0.11	0.01	0.03	0.03	—	375	375	< 0.005	0.05	0.02	391
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	7.65	7.65	< 0.005	< 0.005	0.01	7.75
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	17.6	17.6	< 0.005	< 0.005	0.02	18.3
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	1.27	1.27	< 0.005	< 0.005	< 0.005	1.28
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.92	2.92	< 0.005	< 0.005	< 0.005	3.04
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.4. Site Preparation (2026) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	3.15	2.65	23.9	21.5	0.04	1.23	—	1.23	1.13	—	1.13	—	3,804	3,804	0.15	0.03	—	3,817

Dust From Material Movement	—	—	—	—	—	—	3.82	3.82	—	1.80	1.80	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.15	0.12	1.12	1.01	< 0.005	0.06	—	0.06	0.05	—	0.05	—	179	179	0.01	< 0.005	—	179
Dust From Material Movement	—	—	—	—	—	—	0.18	0.18	—	0.08	0.08	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.03	0.02	0.20	0.18	< 0.005	0.01	—	0.01	0.01	—	0.01	—	29.6	29.6	< 0.005	< 0.005	—	29.7
Dust From Material Movement	—	—	—	—	—	—	0.03	0.03	—	0.02	0.02	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.05	0.06	0.64	0.00	0.00	0.16	0.16	0.00	0.04	0.04	—	158	158	< 0.005	0.01	0.02	160

Vendor	0.01	0.01	0.40	0.16	< 0.005	0.01	0.10	0.11	0.01	0.03	0.03	—	375	375	< 0.005	0.05	0.02	391
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	7.65	7.65	< 0.005	< 0.005	0.01	7.75
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	17.6	17.6	< 0.005	< 0.005	0.02	18.3
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	1.27	1.27	< 0.005	< 0.005	< 0.005	1.28
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.92	2.92	< 0.005	< 0.005	< 0.005	3.04
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Site Preparation (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	2.99	2.51	22.6	21.1	0.04	1.13	—	1.13	1.04	—	1.04	—	3,805	3,805	0.15	0.03	—	3,818
Dust From Material Movement	—	—	—	—	—	3.82	3.82	—	1.80	1.80	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.08	0.06	0.57	0.54	< 0.005	0.03	—	0.03	0.03	—	0.03	—	96.8	96.8	< 0.005	< 0.005	—	97.1
Dust From Material Movement	—	—	—	—	—	—	0.10	0.10	—	0.05	0.05	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.01	0.10	0.10	< 0.005	0.01	—	0.01	< 0.005	—	< 0.005	—	16.0	16.0	< 0.005	< 0.005	—	16.1
Dust From Material Movement	—	—	—	—	—	—	0.02	0.02	—	0.01	0.01	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.05	0.05	0.60	0.00	0.00	0.16	0.16	0.00	0.04	0.04	—	156	156	< 0.005	0.01	0.01	157
Vendor	0.01	0.01	0.38	0.16	< 0.005	0.01	0.10	0.11	0.01	0.03	0.03	—	367	367	< 0.005	0.05	0.02	382
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	4.07	4.07	< 0.005	< 0.005	0.01	4.13

Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	9.33	9.33	< 0.005	< 0.005	0.01	9.71
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.67	0.67	< 0.005	< 0.005	< 0.005	0.68
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	1.54	1.54	< 0.005	< 0.005	< 0.005	1.61
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.6. Site Preparation (2027) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	2.99	2.51	22.6	21.1	0.04	1.13	—	1.13	1.04	—	1.04	—	3,805	3,805	0.15	0.03	—	3,818
Dust From Material Movement	—	—	—	—	—	—	3.82	3.82	—	1.80	1.80	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.08	0.06	0.57	0.54	< 0.005	0.03	—	0.03	0.03	—	0.03	—	96.8	96.8	< 0.005	< 0.005	—	97.1

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Dust From Material Movement	—	—	—	—	—	—	0.10	0.10	—	0.05	0.05	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.01	0.10	0.10	< 0.005	0.01	—	0.01	< 0.005	—	< 0.005	—	16.0	16.0	< 0.005	< 0.005	—	16.1
Dust From Material Movement	—	—	—	—	—	—	0.02	0.02	—	0.01	0.01	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.05	0.05	0.60	0.00	0.00	0.16	0.16	0.00	0.04	0.04	—	156	156	< 0.005	0.01	0.01	157
Vendor	0.01	0.01	0.38	0.16	< 0.005	0.01	0.10	0.11	0.01	0.03	0.03	—	367	367	< 0.005	0.05	0.02	382
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	4.07	4.07	< 0.005	< 0.005	0.01	4.13
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	9.33	9.33	< 0.005	< 0.005	0.01	9.71
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.67	0.67	< 0.005	< 0.005	< 0.005	0.68

Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	1.54	1.54	< 0.005	< 0.005	< 0.005	1.61
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Grading (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	8.72	7.33	62.8	62.1	0.15	2.78	—	2.78	2.56	—	2.56	—	16,443	16,443	0.67	0.13	—	16,500
Dust From Material Movement	—	—	—	—	—	—	5.75	5.75	—	2.00	2.00	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.08	0.90	7.75	7.65	0.02	0.34	—	0.34	0.32	—	0.32	—	2,027	2,027	0.08	0.02	—	2,034
Dust From Material Movement	—	—	—	—	—	—	0.71	0.71	—	0.25	0.25	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.20	0.16	1.41	1.40	< 0.005	0.06	—	0.06	0.06	—	0.06	—	336	336	0.01	< 0.005	—	337
Dust From Material Movement	—	—	—	—	—	—	0.13	0.13	—	0.05	0.05	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.16	0.14	0.15	1.68	0.00	0.00	0.46	0.46	0.00	0.11	0.11	—	436	436	0.01	0.02	0.04	441
Vendor	0.02	0.02	0.64	0.26	< 0.005	0.01	0.17	0.18	0.01	0.05	0.06	—	612	612	< 0.005	0.08	0.04	636
Hauling	0.02	0.02	1.08	0.24	0.01	0.02	0.25	0.27	0.02	0.07	0.08	—	917	917	< 0.005	0.15	0.05	961
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.02	0.02	0.02	0.23	0.00	0.00	0.06	0.06	0.00	0.01	0.01	—	55.3	55.3	< 0.005	< 0.005	0.08	56.0
Vendor	< 0.005	< 0.005	0.08	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	75.4	75.4	< 0.005	0.01	0.07	78.4
Hauling	< 0.005	< 0.005	0.13	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	—	113	113	< 0.005	0.02	0.10	118
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	9.15	9.15	< 0.005	< 0.005	0.01	9.27
Vendor	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	12.5	12.5	< 0.005	< 0.005	0.01	13.0
Hauling	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	18.7	18.7	< 0.005	< 0.005	0.02	19.6

3.8. Grading (2027) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	8.72	7.33	62.8	62.1	0.15	2.78	—	2.78	2.56	—	2.56	—	16,443	16,443	0.67	0.13	—	16,500
Dust From Material Movement	—	—	—	—	—	—	5.75	5.75	—	2.00	2.00	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.08	0.90	7.75	7.65	0.02	0.34	—	0.34	0.32	—	0.32	—	2,027	2,027	0.08	0.02	—	2,034
Dust From Material Movement	—	—	—	—	—	—	0.71	0.71	—	0.25	0.25	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.20	0.16	1.41	1.40	< 0.005	0.06	—	0.06	0.06	—	0.06	—	336	336	0.01	< 0.005	—	337

Dust From Material Movement	—	—	—	—	—	—	0.13	0.13	—	0.05	0.05	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.16	0.14	0.15	1.68	0.00	0.00	0.46	0.46	0.00	0.11	0.11	—	436	436	0.01	0.02	0.04	441
Vendor	0.02	0.02	0.64	0.26	< 0.005	0.01	0.17	0.18	0.01	0.05	0.06	—	612	612	< 0.005	0.08	0.04	636
Hauling	0.02	0.02	1.08	0.24	0.01	0.02	0.25	0.27	0.02	0.07	0.08	—	917	917	< 0.005	0.15	0.05	961
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.02	0.02	0.02	0.23	0.00	0.00	0.06	0.06	0.00	0.01	0.01	—	55.3	55.3	< 0.005	< 0.005	0.08	56.0
Vendor	< 0.005	< 0.005	0.08	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	75.4	75.4	< 0.005	0.01	0.07	78.4
Hauling	< 0.005	< 0.005	0.13	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	—	113	113	< 0.005	0.02	0.10	118
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	9.15	9.15	< 0.005	< 0.005	0.01	9.27
Vendor	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	12.5	12.5	< 0.005	< 0.005	0.01	13.0
Hauling	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	18.7	18.7	< 0.005	< 0.005	0.02	19.6

3.9. Building Construction (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	2.03	1.70	15.5	22.1	0.04	0.54	—	0.54	0.49	—	0.49	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	2.03	1.70	15.5	22.1	0.04	0.54	—	0.54	0.49	—	0.49	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.15	0.96	8.74	12.5	0.02	0.30	—	0.30	0.28	—	0.28	—	2,164	2,164	0.09	0.02	—	2,172
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.21	0.17	1.59	2.28	< 0.005	0.06	—	0.06	0.05	—	0.05	—	358	358	0.01	< 0.005	—	360
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Worker	2.91	2.63	2.29	41.4	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	8,153	8,153	0.09	0.28	25.4	8,262
Vendor	0.23	0.17	5.13	2.14	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,193	5,193	0.01	0.68	12.0	5,409
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	2.65	2.37	2.55	27.8	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,221	7,221	0.12	0.29	0.66	7,310
Vendor	0.20	0.15	5.41	2.22	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,199	5,199	0.01	0.69	0.31	5,405
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	1.50	1.34	1.58	17.6	0.00	0.00	4.25	4.25	0.00	1.00	1.00	—	4,204	4,204	0.07	0.16	6.20	4,260
Vendor	0.12	0.09	3.06	1.24	0.02	0.04	0.82	0.86	0.04	0.23	0.27	—	2,939	2,939	0.01	0.39	2.92	3,057
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.27	0.24	0.29	3.21	0.00	0.00	0.78	0.78	0.00	0.18	0.18	—	696	696	0.01	0.03	1.03	705
Vendor	0.02	0.02	0.56	0.23	< 0.005	0.01	0.15	0.16	0.01	0.04	0.05	—	487	487	< 0.005	0.06	0.48	506
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.10. Building Construction (2027) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	2.03	1.70	15.5	22.1	0.04	0.54	—	0.54	0.49	—	0.49	—	3,827	3,827	0.16	0.03	—	3,840

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	2.03	1.70	15.5	22.1	0.04	0.54	—	0.54	0.49	—	0.49	—	3,827	3,827	0.16	0.03	—	3,840	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.15	0.96	8.74	12.5	0.02	0.30	—	0.30	0.28	—	0.28	—	2,164	2,164	0.09	0.02	—	2,172	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.21	0.17	1.59	2.28	< 0.005	0.06	—	0.06	0.05	—	0.05	—	358	358	0.01	< 0.005	—	360	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	2.91	2.63	2.29	41.4	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	8,153	8,153	0.09	0.28	25.4	8,262	
Vendor	0.23	0.17	5.13	2.14	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,193	5,193	0.01	0.68	12.0	5,409	
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Worker	2.65	2.37	2.55	27.8	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,221	7,221	0.12	0.29	0.66	7,310
Vendor	0.20	0.15	5.41	2.22	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,199	5,199	0.01	0.69	0.31	5,405
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	1.50	1.34	1.58	17.6	0.00	0.00	4.25	4.25	0.00	1.00	1.00	—	4,204	4,204	0.07	0.16	6.20	4,260
Vendor	0.12	0.09	3.06	1.24	0.02	0.04	0.82	0.86	0.04	0.23	0.27	—	2,939	2,939	0.01	0.39	2.92	3,057
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.27	0.24	0.29	3.21	0.00	0.00	0.78	0.78	0.00	0.18	0.18	—	696	696	0.01	0.03	1.03	705
Vendor	0.02	0.02	0.56	0.23	< 0.005	0.01	0.15	0.16	0.01	0.04	0.05	—	487	487	< 0.005	0.06	0.48	506
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Building Construction (2028) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.95	1.63	14.8	22.1	0.04	0.48	—	0.48	0.44	—	0.44	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Off-Road Equipment	1.95	1.63	14.8	22.1	0.04	0.48	—	0.48	0.44	—	0.44	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.98	0.82	7.43	11.1	0.02	0.24	—	0.24	0.22	—	0.22	—	1,925	1,925	0.08	0.02	—	1,931
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.18	0.15	1.36	2.03	< 0.005	0.04	—	0.04	0.04	—	0.04	—	319	319	0.01	< 0.005	—	320
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	2.82	2.55	2.03	38.5	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,998	7,998	0.09	0.28	22.8	8,105
Vendor	0.22	0.16	4.96	2.04	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,059	5,059	0.01	0.68	10.6	5,274
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	2.32	2.26	2.29	25.8	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,085	7,085	0.10	0.28	0.59	7,170
Vendor	0.20	0.15	5.24	2.08	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,065	5,065	0.01	0.68	0.27	5,269
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	

Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	1.18	1.15	1.28	14.5	0.00	0.00	3.78	3.78	0.00	0.89	0.89	—	3,668	3,668	0.05	0.14	4.97	3,715
Vendor	0.11	0.08	2.62	1.03	0.02	0.04	0.73	0.77	0.04	0.20	0.24	—	2,546	2,546	0.01	0.34	2.30	2,651
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.21	0.21	0.23	2.65	0.00	0.00	0.69	0.69	0.00	0.16	0.16	—	607	607	0.01	0.02	0.82	615
Vendor	0.02	0.01	0.48	0.19	< 0.005	0.01	0.13	0.14	0.01	0.04	0.04	—	421	421	< 0.005	0.06	0.38	439
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Building Construction (2028) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.95	1.63	14.8	22.1	0.04	0.48	—	0.48	0.44	—	0.44	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.95	1.63	14.8	22.1	0.04	0.48	—	0.48	0.44	—	0.44	—	3,827	3,827	0.16	0.03	—	3,840
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.98	0.82	7.43	11.1	0.02	0.24	—	0.24	0.22	—	0.22	—	1,925	1,925	0.08	0.02	—	1,931
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.18	0.15	1.36	2.03	< 0.005	0.04	—	0.04	0.04	—	0.04	—	319	319	0.01	< 0.005	—	320
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	2.82	2.55	2.03	38.5	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,998	7,998	0.09	0.28	22.8	8,105
Vendor	0.22	0.16	4.96	2.04	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,059	5,059	0.01	0.68	10.6	5,274
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	2.32	2.26	2.29	25.8	0.00	0.00	7.58	7.58	0.00	1.78	1.78	—	7,085	7,085	0.10	0.28	0.59	7,170
Vendor	0.20	0.15	5.24	2.08	0.04	0.08	1.45	1.53	0.08	0.40	0.48	—	5,065	5,065	0.01	0.68	0.27	5,269
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	1.18	1.15	1.28	14.5	0.00	0.00	3.78	3.78	0.00	0.89	0.89	—	3,668	3,668	0.05	0.14	4.97	3,715
Vendor	0.11	0.08	2.62	1.03	0.02	0.04	0.73	0.77	0.04	0.20	0.24	—	2,546	2,546	0.01	0.34	2.30	2,651
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Worker	0.21	0.21	0.23	2.65	0.00	0.00	0.69	0.69	0.00	0.16	0.16	—	607	607	0.01	0.02	0.82	615
Vendor	0.02	0.01	0.48	0.19	< 0.005	0.01	0.13	0.14	0.01	0.04	0.04	—	421	421	< 0.005	0.06	0.38	439
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Paving (2028) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.22	1.03	9.94	14.9	0.02	0.38	—	0.38	0.35	—	0.35	—	2,267	2,267	0.09	0.02	—	2,274
Paving	3.20	3.20	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.22	1.03	9.94	14.9	0.02	0.38	—	0.38	0.35	—	0.35	—	2,267	2,267	0.09	0.02	—	2,274
Paving	3.20	3.20	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.17	0.14	1.36	2.04	< 0.005	0.05	—	0.05	0.05	—	0.05	—	310	310	0.01	< 0.005	—	312

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
---------	------	------	------	------	------	------	------	------	------	------	------	---	------	------	------	------	------	------	------	------

3.14. Paving (2028) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.22	1.03	9.94	14.9	0.02	0.38	—	0.38	0.35	—	0.35	—	2,267	2,267	0.09	0.02	—	2,274
Paving	3.20	3.20	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.22	1.03	9.94	14.9	0.02	0.38	—	0.38	0.35	—	0.35	—	2,267	2,267	0.09	0.02	—	2,274
Paving	3.20	3.20	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.17	0.14	1.36	2.04	< 0.005	0.05	—	0.05	0.05	—	0.05	—	310	310	0.01	< 0.005	—	312
Paving	0.44	0.44	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

3.15. Architectural Coating (2028) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.35	0.29	2.16	2.98	< 0.005	0.04	—	0.04	0.04	—	0.04	—	356	356	0.01	< 0.005	—	357
Architectural Coatings	143	143	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.35	0.29	2.16	2.98	< 0.005	0.04	—	0.04	0.04	—	0.04	—	356	356	0.01	< 0.005	—	357
Architectural Coatings	143	143	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.05	0.04	0.30	0.41	< 0.005	0.01	—	0.01	0.01	—	0.01	—	48.8	48.8	< 0.005	< 0.005	—	48.9

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Architect Coatings	19.6	19.6	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.01	0.05	0.07	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	8.07	8.07	< 0.005	< 0.005	—	8.10
Architectural Coatings	3.57	3.57	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.56	0.51	0.41	7.70	0.00	0.00	1.52	1.52	0.00	0.36	0.36	—	1,600	1,600	0.02	0.06	4.57	1,621
Vendor	0.01	0.01	0.32	0.13	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	327	327	< 0.005	0.04	0.69	341
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.46	0.45	0.46	5.16	0.00	0.00	1.52	1.52	0.00	0.36	0.36	—	1,417	1,417	0.02	0.06	0.12	1,434
Vendor	0.01	0.01	0.34	0.13	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	328	328	< 0.005	0.04	0.02	341
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.06	0.07	0.79	0.00	0.00	0.21	0.21	0.00	0.05	0.05	—	200	200	< 0.005	0.01	0.27	202
Vendor	< 0.005	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	44.9	44.9	< 0.005	0.01	0.04	46.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Worker	0.01	0.01	0.01	0.14	0.00	0.00	0.04	0.04	0.00	0.01	0.01	—	33.1	33.1	< 0.005	< 0.005	0.04	33.5
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	7.43	7.43	< 0.005	< 0.005	0.01	7.73
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.16. Architectural Coating (2028) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.35	0.29	2.16	2.98	< 0.005	0.04	—	0.04	0.04	—	0.04	—	356	356	0.01	< 0.005	—	357
Architectural Coatings	40.4	40.4	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.35	0.29	2.16	2.98	< 0.005	0.04	—	0.04	0.04	—	0.04	—	356	356	0.01	< 0.005	—	357
Architectural Coatings	40.4	40.4	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	

16408 - Bell Mountain Commerce Center Construction Mitigated Detailed Report, 9/9/2025

Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.05	0.04	0.30	0.41	< 0.005	0.01	—	0.01	0.01	—	0.01	—	48.8	48.8	< 0.005	< 0.005	—	48.9
Architectural Coatings	5.53	5.53	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.01	0.01	0.05	0.07	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	8.07	8.07	< 0.005	< 0.005	—	8.10
Architectural Coatings	1.01	1.01	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.56	0.51	0.41	7.70	0.00	0.00	1.52	1.52	0.00	0.36	0.36	—	1,600	1,600	0.02	0.06	4.57	1,621
Vendor	0.01	0.01	0.32	0.13	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	327	327	< 0.005	0.04	0.69	341
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.46	0.45	0.46	5.16	0.00	0.00	1.52	1.52	0.00	0.36	0.36	—	1,417	1,417	0.02	0.06	0.12	1,434
Vendor	0.01	0.01	0.34	0.13	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	328	328	< 0.005	0.04	0.02	341

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.06	0.06	0.07	0.79	0.00	0.00	0.21	0.21	0.00	0.05	0.05	—	200	200	< 0.005	0.01	0.27	202
Vendor	< 0.005	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	44.9	44.9	< 0.005	0.01	0.04	46.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.01	0.01	0.01	0.14	0.00	0.00	0.04	0.04	0.00	0.01	0.01	—	33.1	33.1	< 0.005	< 0.005	0.04	33.5
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	7.43	7.43	< 0.005	< 0.005	0.01	7.73
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	12/1/2026	12/7/2026	5.00	5.00	—
Site Preparation	Site Preparation	12/8/2026	1/13/2027	5.00	27.0	—
Grading	Grading	1/14/2027	3/17/2027	5.00	45.0	—
Building Construction	Building Construction	3/18/2027	9/13/2028	5.00	390	—
Paving	Paving	9/14/2028	11/22/2028	5.00	50.0	—
Architectural Coating	Architectural Coating	9/14/2028	11/22/2028	5.00	50.0	—

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Site Preparation	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Site Preparation	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43
Grading	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	2.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Grading	Scrapers	Diesel	Average	6.00	8.00	423	0.48
Grading	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43
Building Construction	Cranes	Diesel	Average	1.00	8.00	367	0.29
Building Construction	Forklifts	Diesel	Average	5.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	2.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Backhoes	Diesel	Average	5.00	8.00	84.0	0.37
Building Construction	Welders	Diesel	Average	2.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	3.00	8.00	81.0	0.42

Paving	Paving Equipment	Diesel	Average	3.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	3.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	2.00	8.00	37.0	0.48

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Site Preparation	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Site Preparation	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43
Grading	Excavators	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	2.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	2.00	8.00	367	0.40
Grading	Scrapers	Diesel	Average	6.00	8.00	423	0.48
Grading	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43
Building Construction	Cranes	Diesel	Average	1.00	8.00	367	0.29
Building Construction	Forklifts	Diesel	Average	5.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	2.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Back hoes	Diesel	Average	5.00	8.00	84.0	0.37
Building Construction	Welders	Diesel	Average	2.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	3.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	3.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	3.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	2.00	8.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	—	—
Demolition	Worker	2.50	18.5	LDA,LDT1,LDT2
Demolition	Vendor	2.00	10.2	HHDT,MHDT
Demolition	Hauling	2.40	20.0	HHDT
Demolition	Onsite truck	—	—	HHDT
Site Preparation	—	—	—	—
Site Preparation	Worker	12.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	12.0	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	—	—	HHDT
Grading	—	—	—	—
Grading	Worker	35.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	20.0	10.2	HHDT,MHDT
Grading	Hauling	14.0	20.0	HHDT
Grading	Onsite truck	—	—	HHDT
Building Construction	—	—	—	—
Building Construction	Worker	580	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	170	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	—	—	HHDT
Paving	—	—	—	—
Paving	Worker	22.5	18.5	LDA,LDT1,LDT2
Paving	Vendor	11.0	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	—	—	HHDT
Architectural Coating	—	—	—	—
Architectural Coating	Worker	116	18.5	LDA,LDT1,LDT2

Architectural Coating	Vendor	11.0	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	—	—	HHDT

5.3.2. Mitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	—	—
Demolition	Worker	2.50	18.5	LDA,LDT1,LDT2
Demolition	Vendor	2.00	10.2	HHDT,MHDT
Demolition	Hauling	2.40	20.0	HHDT
Demolition	Onsite truck	—	—	HHDT
Site Preparation	—	—	—	—
Site Preparation	Worker	12.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	12.0	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	—	—	HHDT
Grading	—	—	—	—
Grading	Worker	35.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	20.0	10.2	HHDT,MHDT
Grading	Hauling	14.0	20.0	HHDT
Grading	Onsite truck	—	—	HHDT
Building Construction	—	—	—	—
Building Construction	Worker	580	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	170	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	—	—	HHDT
Paving	—	—	—	—
Paving	Worker	22.5	18.5	LDA,LDT1,LDT2

Paving	Vendor	11.0	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	—	—	HHDT
Architectural Coating	—	—	—	—
Architectural Coating	Worker	116	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	11.0	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	—	—	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	2,072,118	690,706	159,456

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (Building Square Footage)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	1,040	—
Site Preparation	—	—	67.5	0.00	—
Grading	5,056	—	428	0.00	—
Paving	0.00	0.00	0.00	0.00	61.0

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
General Heavy Industry	0.00	0%
Refrigerated Warehouse-Rail	0.00	0%
Unrefrigerated Warehouse-No Rail	0.00	0%
Parking Lot	15.7	100%
Other Asphalt Surfaces	45.3	100%
User Defined Industrial	0.00	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2026	0.00	346	0.03	< 0.005
2027	0.00	346	0.03	< 0.005
2028	0.00	346	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1.2. Mitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.1.2. Mitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

5.18.2.2. Mitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	34.1	annual days of extreme heat
Extreme Precipitation	0.90	annual days with precipitation above 20 mm

Sea Level Rise	—	meters of inundation depth
Wildfire	0.80	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	5	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	0	0	0	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	5	1	1	4

Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	1	1	1	2
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	—
AQ-Ozone	80.0
AQ-PM	7.52
AQ-DPM	21.9
Drinking Water	34.9
Lead Risk Housing	27.7
Pesticides	0.00
Toxic Releases	37.1
Traffic	59.7
Effect Indicators	—

CleanUp Sites	52.1
Groundwater	44.8
Haz Waste Facilities/Generators	16.6
Impaired Water Bodies	51.2
Solid Waste	84.7
Sensitive Population	—
Asthma	88.0
Cardio-vascular	89.5
Low Birth Weights	91.9
Socioeconomic Factor Indicators	—
Education	26.9
Housing	11.6
Linguistic	—
Poverty	52.5
Unemployment	90.6

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	—
Above Poverty	44.97626075
Employed	30.46323624
Median HI	35.0442705
Education	—
Bachelor's or higher	42.93596818
High school enrollment	100
Preschool enrollment	39.79212113
Transportation	—

Auto Access	85.40998332
Active commuting	24.00872578
Social	—
2-parent households	51.18696266
Voting	75.34967278
Neighborhood	—
Alcohol availability	88.37418196
Park access	16.65597331
Retail density	8.469138971
Supermarket access	2.399589375
Tree canopy	0.71859361
Housing	—
Homeownership	62.60746824
Housing habitability	64.39112024
Low-inc homeowner severe housing cost burden	17.8108559
Low-inc renter severe housing cost burden	77.19748492
Uncrowded housing	68.66418581
Health Outcomes	—
Insured adults	64.22430386
Arthritis	4.4
Asthma ER Admissions	7.6
High Blood Pressure	8.9
Cancer (excluding skin)	9.1
Asthma	30.0
Coronary Heart Disease	6.8
Chronic Obstructive Pulmonary Disease	13.3
Diagnosed Diabetes	35.6
Life Expectancy at Birth	34.2

Cognitively Disabled	41.3
Physically Disabled	11.3
Heart Attack ER Admissions	2.7
Mental Health Not Good	48.5
Chronic Kidney Disease	20.1
Obesity	46.5
Pedestrian Injuries	48.3
Physical Health Not Good	39.9
Stroke	15.1
Health Risk Behaviors	—
Binge Drinking	57.0
Current Smoker	46.7
No Leisure Time for Physical Activity	58.0
Climate Change Exposures	—
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	58.1
Elderly	16.8
English Speaking	81.5
Foreign-born	11.0
Outdoor Workers	47.0
Climate Change Adaptive Capacity	—
Impervious Surface Cover	90.2
Traffic Density	37.9
Traffic Access	23.0
Other Indices	—
Hardship	32.7
Other Decision Support	—

2016 Voting

75.3

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	65.0
Healthy Places Index Score for Project Location (b)	46.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Based on 2028 OY and provided construction start and end dates. (end of 2026 and 2028, respectively)
Land Use	Taken from site plan
Construction: Off-Road Equipment	Project applicant provided equipment list as well as CalEEMod defaults.
Construction: Trips and VMT	"CalEEMod only assumes Vendor Trips during Building Construction. The CalEEMod default trips were ratioed between each phase based on the number of days."
Operations: Energy Use	Natural gas will not be utilized

Operations: Vehicle Data	Trip information taken from Traffic Analysis.
Operations: Fleet Mix	Passenger Car Mix estimated based on CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, MCY). Truck Fleet Mix based on 2, 3 and 4 axle trucks
Operations: Refrigerants	As of 1 January 2022, new commercial refrigeration equipment may not use refrigerants with a GWP of 150 or greater. Beginning 1 January 2025, all new air conditioning equipment may not use refrigerants with a GWP of 750 or greater
Construction: Architectural Coatings	—

This page intentionally left blank