

# TECHNICAL MEMORANDUM

**DATE:** December 9, 2025  
**TO:** Nicole Morse, T&B Planning, Inc.  
**FROM:** Alex So, Urban Crossroads, Inc.  
**JOB NO:** 16408-01 VMT Truck

## **SUBJECT: APPLE VALLEY 84 SUPPLEMENTAL VEHICLE MILES TRAVELED (VMT) ANALYSIS**

Urban Crossroads, Inc. has completed the following Supplemental Vehicle Miles Traveled (VMT) Analysis for the Apple Valley 84 development (Project), which is located north of Stoddard Wells Road and south of Johnson Road in the Town of Apple Valley.

### **PROJECT OVERVIEW**

The Project consists of the development of an industrial warehouse and distribution building totaling 1,381,412 square feet. A site plan for the proposed Project is shown in Attachment A.

### **SUPPLEMENTAL VMT EVALUATION**

In an effort to fully disclose potential VMT impacts, this memorandum includes a supplemental VMT evaluation measuring project generated total VMT and total VMT per Service Population (VMT per SP). For purposes of this analysis, total VMT has been estimated from vehicle trip generation rates (see Attachment B) consistent with the Project's Bell Mountain Commerce Center Traffic Analysis (Urban Crossroads, September 2025), and average trip length for each vehicle type. Average trip length information has been obtained from the San Bernardino Traffic Analysis Model (SBTAM) for passenger cars and StreetLight™ Data's Truck Volume Metrics for medium heavy-duty trucks (MDT) (2 and 3 axle trucks) and heavy heavy-duty trucks (HDT) (4+ axle trucks). This supplemental assessment is intended to accompany the Bell Mountain Commerce Center VMT Analysis (Urban Crossroads, 2025), which followed the Town of Apple Valley adopted Resolution No. 2021-08 A Resolution of the City Council of the Town of Apple Valley, California, Adopting Thresholds of Significance for Vehicle Miles Traveled (VMT) Under the California Environmental Quality Act (CEQA) (May 11, 2021) (1) (VMT Guidelines) and only considers travel demand model-based truck travel lengths.

### **ABOUT STREETLIGHT DATA<sup>1</sup>**

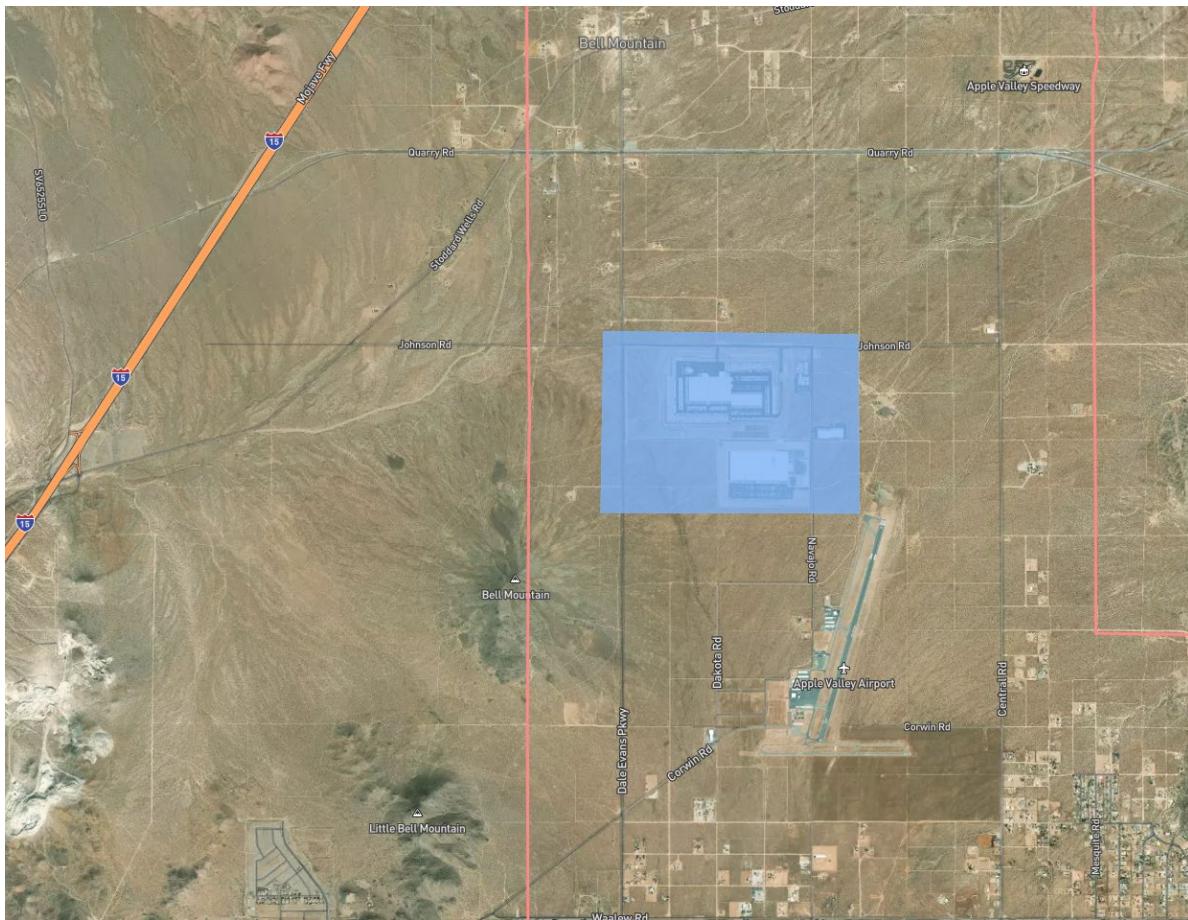
StreetLight gets its data from anonymous location information collected through smartphones, navigation apps, connected vehicles, and commercial fleets. These signals show where and when devices are moving, but they do not identify individual people. StreetLight processes billions of these

---

<sup>1</sup>StreetLight Insight Truck Volume Methodology and Validation (April 2025).

data points to figure out travel patterns, such as where trips start and end, the routes people take, and whether the travel is by car, truck, bike, or walking. To make sure the information is accurate, StreetLight compares its results to real traffic counts from sensors and state transportation records, then adjusts the data to match actual conditions. In simple terms, StreetLight turns anonymous signals from phones and vehicles into a clear picture of how people and goods move around, which planners can then use to understand traffic and transportation impacts.

Building on this general framework, StreetLight applies more detailed technical methods to estimate truck activity and validate its results. StreetLight Data's truck volume metrics are based on five linked machine learning models that estimate vehicle volume and trip length by vehicle class and total vehicles. StreetLight provides truck volume information from 2019 through 2025. To support volume estimates across different time periods, StreetLight applies the Monthly Average Daily Trip (MADT) to the days or parts of the day required for a particular analysis. In the scaling process, StreetLight factors the ratio between sample trip counts for particular hours and days and the trip counts for the entire month with the volume for corresponding hours, day type, and MADT for that zone.


The estimated truck volume is compared to the actual volume reported by permanent traffic counters to validate the model results. The permanent counter data comes from the Federal Highway Administration (FHWA) Travel Monitoring Analysis System (TMAS) vehicle classification dataset, which includes traffic counts from more than 3,000 unique sites collected between September 2021 and September 2022. The StreetLight model produces Pearson correlation coefficients of 0.99, 0.92, and 0.97 for light, medium, and heavy duty vehicles, respectively, when comparing estimated and actual MADT. These results indicate that the StreetLight model is highly robust.

### **Survey Area**

To ensure that the survey results reflect the operational characteristics of large-scale warehouse uses comparable to those proposed by the Project, it was necessary to identify a facility of similar size and function. The Walmart and Big Lots facilities in Apple Valley provide an appropriate reference location, as they represent modern, high-cube warehouse operations with multiple dock-high loading positions and truck circulation features consistent with large-scale logistics development. Although the Big Lots facility ceased operations near the end of 2024, the survey data was collected during 2021–2022 when the site was fully operational. Data from these facilities captures both truck activity and employee travel patterns characteristic of logistics-oriented warehouses, thereby offering a reliable and representative basis for evaluating the Project's trip generation and VMT impacts.

This area was chosen due to its proximity to the Project and anticipated operational similarities. The data for this survey includes information on Medium Heavy-Duty Trucks (MDT) and Heavy Heavy-Duty Trucks (HDT) that either originated, ended, or passed through the surveyed area during the most recent consecutive 12-month period available from StreetLight™ Data for truck travel volume metrics. Exhibit 1 shows the surveyed location.

## EXHIBIT 1: SURVEYED LOCATION



### TRUCK TRIP LENGTH

Utilizing the above parameters, average daily zone traffic<sup>2</sup> of MDT vs. HDT, average trip length by vehicle class, and distance bins<sup>3</sup> of per-trip length in miles was obtained from StreetLight Data (see Attachment C). Total average trip length for MDT and HDT was calculated by multiplying the disaggregated data's average trip length with its' respective percentage of total aggregated trucks (effectively calculating a weighted mean using percentages as weights) and then summing the amounts.

**TABLE 1: AVERAGE TRIP LENGTH BY VEHICLE TYPE**

|              | MDT Avg Trip Length | MDT % of Total | HDT Avg Trip Length | HDT % of Total | Weighted Average Trip Length |
|--------------|---------------------|----------------|---------------------|----------------|------------------------------|
| Apple Valley | 47.2                | 75.3%          | 105.8               | 24.7%          | 62.1                         |

<sup>2</sup> Average daily zone traffic was then used to calculate % of total aggregated trucks for each disaggregate.

<sup>3</sup> Distance bins were defaulted to: 0-1, 1-2, 2-5, 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100, and 100+ in miles.

Based on traffic monitoring data collected for the most recent 12-month period of complete data available from StreetLight Data, the average trip length of MD and HD trucks has been calculated 62.1 miles.

### **PROJECT VMT ESTIMATES**

Table 3 presents an estimation of total VMT for the Project, which utilizes vehicle trip generation rates consistent with the Project's traffic study multiplied by the average trip length for each vehicle type.

**TABLE 3: PROJECT VMT**

| Vehicle Type | Vehicle Trips | Vehicle Trip Length | VMT           |
|--------------|---------------|---------------------|---------------|
| Automobile   | 2,240         | 15.4                | 34,496        |
| Total Truck  | 558           | 62.1                | 34,652        |
| <b>Total</b> | <b>2,798</b>  | -                   | <b>69,148</b> |

Table 4 presents the calculation of the efficiency metric total VMT per SP, which is the product of total VMT generated by the Project divided by its SP (employment). Table 3 identifies a comparison between the Project's total VMT per SP to the City's adopted impact threshold. As specified in the Town of Apple Valley's VMT Guidelines **if the baseline project generated VMT per SP exceeds the Town of Apple Valley General Plan Buildout VMT per SP, it would result in a significant impact.** As calculated from SBTAM the Town of Apple Valley average VMT per service population as 35.7<sup>4</sup>.

**TABLE 4: VMT PER SP**

|                       | Project |
|-----------------------|---------|
| SP                    | 1,156   |
| Total VMT             | 69,148  |
| VMT per SP            | 59.8    |
| Threshold             | 35.7    |
| VMT Exceeds Threshold | Yes     |

As presented in Table 4, using the VMT calculation methodology previously described, the Project is forecast to generate total VMT per SP of 59.8, which would exceed the City's VMT impact threshold and result in a significant VMT impact.

If you have any questions, please contact me directly at [aso@urbanxroads.com](mailto:aso@urbanxroads.com).

---

<sup>4</sup> As calculated from SBTAM.

## REFERENCES

1. **Town of Apple Valley.** *Resolution of the City Council of the Town of Apple Valley, California, Adopting Thresholds of Significance for Vehicle Miles Traveled (VMT) Under the California Environmental Quality Act.* May 2021.



**ATTACHMENT A:**  
**PROJECT SITE PLAN**



**ATTACHMENT B:**  
**PROJECT TRIP GENERATION**

| Land Use                                         | Quantity Units <sup>1</sup> | AM Peak Hour |           |            | PM Peak Hour |            |            | Daily        |
|--------------------------------------------------|-----------------------------|--------------|-----------|------------|--------------|------------|------------|--------------|
|                                                  |                             | In           | Out       | Total      | In           | Out        | Total      |              |
| Actual Vehicles:                                 |                             |              |           |            |              |            |            |              |
| General Light Industrial                         | 138.141 TSF                 |              |           |            |              |            |            |              |
| Passenger Cars:                                  |                             | 58           | 7         | 65         | 9            | 58         | 67         | 462          |
| 2-axle Trucks:                                   |                             | 0            | 0         | 0          | 0            | 0          | 0          | 6            |
| 3-axle Trucks:                                   |                             | 0            | 0         | 0          | 0            | 0          | 0          | 8            |
| 4+-axle Trucks:                                  |                             | 1            | 0         | 1          | 0            | 0          | 0          | 22           |
| Total Truck Trips (Actual Vehicles):             |                             | 1            | 0         | 1          | 0            | 0          | 0          | 36           |
| Total Trips (Actual Vehicles) <sup>2</sup>       |                             | 59           | 7         | 66         | 9            | 58         | 67         | 498          |
| High-Cube Cold Storage                           | 207.212 TSF                 |              |           |            |              |            |            |              |
| Passenger Cars:                                  |                             | 12           | 4         | 16         | 7            | 9          | 16         | 296          |
| 2-axle Trucks:                                   |                             | 1            | 2         | 3          | 1            | 1          | 2          | 58           |
| 3-axle Trucks:                                   |                             | 0            | 0         | 0          | 0            | 0          | 0          | 18           |
| 4+-axle Trucks:                                  |                             | 1            | 2         | 3          | 2            | 2          | 4          | 90           |
| Total Truck Trips (Actual Vehicles):             |                             | 2            | 4         | 6          | 3            | 3          | 6          | 166          |
| Total Trips (Actual Vehicles) <sup>2</sup>       |                             | 14           | 8         | 22         | 10           | 12         | 22         | 462          |
| High-Cube Fulfillment (Non-Sort)                 | 1,036.059 TSF               |              |           |            |              |            |            |              |
| Passenger Cars:                                  |                             | 83           | 21        | 104        | 54           | 81         | 135        | 1,482        |
| 2-axle Trucks:                                   |                             | 2            | 1         | 3          | 1            | 1          | 2          | 60           |
| 3-axle Trucks:                                   |                             | 2            | 2         | 4          | 1            | 1          | 2          | 74           |
| 4+-axle Trucks:                                  |                             | 6            | 7         | 13         | 3            | 3          | 6          | 222          |
| Total Truck Trips (Actual Vehicles):             |                             | 10           | 10        | 20         | 5            | 5          | 10         | 356          |
| Total Trips (Actual Vehicles) <sup>2</sup>       |                             | 93           | 31        | 124        | 59           | 86         | 145        | 1,838        |
| Passenger Cars                                   |                             | 153          | 32        | 185        | 70           | 148        | 218        | 2,240        |
| Trucks                                           |                             | 13           | 14        | 27         | 8            | 8          | 16         | 558          |
| <b>Total Trips (Actual Vehicles)<sup>2</sup></b> |                             | <b>166</b>   | <b>46</b> | <b>212</b> | <b>78</b>    | <b>156</b> | <b>234</b> | <b>2,798</b> |

<sup>1</sup> TSF = thousand square feet

<sup>2</sup> Total Trips = Passenger Cars + Truck Trips.

**ATTACHMENT C**  
**STREETLIGHT DATA OUTPUT**

| Intersection Type | Zone ID | Zone Name    | Zone Is Pass-Through | Zone Direction (degrees) | Zone is Bi-Direction | Day Type          | Day Part               | Average Daily Zone Traffic (Std. Volume) | Avg Travel Time (sec) | Avg All Travel Time (sec) | Avg Trip Length (mi) |
|-------------------|---------|--------------|----------------------|--------------------------|----------------------|-------------------|------------------------|------------------------------------------|-----------------------|---------------------------|----------------------|
| Trip Pass-Through | 1       | Apple Valley | yes                  | N/A                      | no                   | 1: Weekday (M-Th) | 0: All Day (12am-12am) | 375                                      | 3641                  | 3846                      | 47.2                 |
| Trip Pass-Through | 1       | Apple Valley | yes                  | N/A                      | no                   | 1: Weekday (M-Th) | 0: All Day (12am-12am) | 123                                      | 8972                  | 9621                      | 105.8                |