



Town of Apple Valley

# Priority Project

## Water Quality Management Plan

For:

**Fisher Construction GTS Cold Storage**

APN: 0463-231-06

Prepared for:

**Fisher Construction Group**

**625 Fisher Lane**

**Burlington, WA 98233**

**(360) 422-3300**

Prepared by:

**Joseph E. Bonadiman and Associates, Inc.**

**234 N Arrowhead Ave.**

**San Bernardino, CA 92408**

**909-885-3806**

**Submittal Date: June 2022**

**Revision No. and Date: TBD**

**Revision No. and Date: TBD**

**Final Approval Date: \_\_\_\_\_**

## Project Owner's Certification

This Town of Apple Valley Water Quality Management Plan (WQMP) has been prepared for Fisher Construction GTS Cold Storage by Joseph E. Bonadiman and Associates, Inc. . The WQMP is intended to comply with the requirements of the Town of Apple Valley and the Phase II Small MS4 General Permit for the Mojave River Watershed. The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the Phase II Small MS4 Permit and the intent of the Town of Apple Valley's compliance efforts. Once the undersigned transfers its interest in the property, its successors in interest and the Town of Apple Valley shall be notified of the transfer. The new owner will be informed of its responsibility under this WQMP. A copy of the approved WQMP shall be available on the subject site in perpetuity.

"I certify under a penalty of law that the provisions (implementation, operation, maintenance, and funding) of the WQMP have been accepted and that the plan will be transferred to future successors."

| Project Data                                                     |                                     |                            |  |
|------------------------------------------------------------------|-------------------------------------|----------------------------|--|
| Permit/Application Number(s):                                    |                                     | Grading Permit Number(s):  |  |
| Tract/Parcel Map Number(s):                                      |                                     | Building Permit Number(s): |  |
| CUP, SUP, and/or APN (Specify Lot Numbers if Portions of Tract): |                                     | APN: 0463-231-06           |  |
| Owner's Signature                                                |                                     |                            |  |
| <b>Owner Name:</b> Green Trucking Solutions LLC                  |                                     |                            |  |
| Title                                                            | Owner                               |                            |  |
| Company                                                          | Green Trucking Solutions LLC        |                            |  |
| Address                                                          | 14816 Valley Blvd. Fontana CA 92335 |                            |  |
| Email                                                            | ilnaz@hubgts.com                    |                            |  |
| Telephone #                                                      | 888-328-3898                        |                            |  |
| Signature                                                        |                                     | Date                       |  |

## Preparer's Certification

| <b>Project Data</b>                                              |  |                            |                  |
|------------------------------------------------------------------|--|----------------------------|------------------|
| Permit/Application Number(s):                                    |  | Grading Permit Number(s):  |                  |
| Tract/Parcel Map Number(s):                                      |  | Building Permit Number(s): |                  |
| CUP, SUP, and/or APN (Specify Lot Numbers if Portions of Tract): |  |                            | APN: 0463-231-06 |

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control measures in this plan were prepared under my oversight and meet the requirements of State of California Water Resources Control Board Order No. 2013-0001-DWQ.

|                                   |                                                                                     |                |
|-----------------------------------|-------------------------------------------------------------------------------------|----------------|
| <b>Engineer:</b> James T. Stanton |                                                                                     | PE Stamp Below |
| Title                             | Vice President                                                                      |                |
| Company                           | Joseph E. Bonadiman and Associates, Inc.                                            |                |
| Address                           | 234 N Arrowhead Ave.                                                                |                |
| Email                             | jts@bonadiman.com                                                                   |                |
| Telephone #                       | 909-885-3806                                                                        |                |
| Signature                         |  |                |
| Date                              | 06-22-2022                                                                          |                |



REGISTERED PROFESSIONAL ENGINEER  
JAMES T. STANTON  
No. C-70944  
Exp. 6-30-23  
CIVIL  
STATE OF CALIFORNIA

Table of Contents

**Section I Introduction**

|                                                                                           |            |
|-------------------------------------------------------------------------------------------|------------|
| <b>Section 1 Discretionary Permits .....</b>                                              | <b>1-1</b> |
| <b>Section 2 Project Description.....</b>                                                 | <b>2-1</b> |
| 2.1 Project Information.....                                                              | 2-1        |
| 2.2 Property Ownership / Management .....                                                 | 2-2        |
| 2.3 Potential Stormwater Pollutants .....                                                 | 2-3        |
| 2.4 Water Quality Credits .....                                                           | 2-4        |
| <b>Section 3 Site and Watershed Description.....</b>                                      | <b>3-1</b> |
| <b>Section 4 Best Management Practices.....</b>                                           | <b>4-1</b> |
| 4.1 Source Control and Site Design BMPs .....                                             | 4-1        |
| 4.1.1 Source Control BMPs.....                                                            | 4-1        |
| 4.1.2 Site Design BMPs .....                                                              | 4-6        |
| 4.2 Treatment BMPs .....                                                                  | 4-7        |
| 4.3 Project Conformance Analysis .....                                                    | 4-12       |
| 4.3.1 Site Design BMP .....                                                               | 4-14       |
| 4.3.2 Infiltration BMP .....                                                              | 4-16       |
| 4.3.4 Biotreatment BMP .....                                                              | 4.19       |
| 4.3.5 Conformance Summary.....                                                            | 4-23       |
| 4.3.6 Hydromodification Control BMP.....                                                  | 4-24       |
| 4.4 Alternative Compliance Plan (if applicable).....                                      | 4-25       |
| <b>Section 5 Inspection &amp; Maintenance Responsibility Post Construction BMPs .....</b> | <b>5-1</b> |
| <b>Section 6 Site Plan and Drainage Plan .....</b>                                        | <b>6-1</b> |
| 6.1. Site Plan and Drainage Plan.....                                                     | 6-1        |
| 6.2 Electronic Data Submittal.....                                                        | 6-1        |

Forms

|                                                                               |             |
|-------------------------------------------------------------------------------|-------------|
| <b>Form 1-1 Project Information .....</b>                                     | <b>1-1</b>  |
| <b>Form 2.1-1 Description of Proposed Project .....</b>                       | <b>2-1</b>  |
| <b>Form 2.2-1 Property Ownership/Management .....</b>                         | <b>2-2</b>  |
| <b>Form 2.3-1 Pollutants of Concern .....</b>                                 | <b>2-3</b>  |
| <b>Form 2.4-1 Water Quality Credits .....</b>                                 | <b>2-4</b>  |
| <b>Form 3-1 Site Location and Hydrologic Features.....</b>                    | <b>3-1</b>  |
| <b>Form 3-2 Hydrologic Characteristics.....</b>                               | <b>3-2</b>  |
| <b>Form 3-3 Watershed Description .....</b>                                   | <b>3-3</b>  |
| <b>Form 4.1-1 Non-Structural Source Control BMP .....</b>                     | <b>4-2</b>  |
| <b>Form 4.1-2 Structural Source Control BMP .....</b>                         | <b>4-4</b>  |
| <b>Form 4.1-3 Site Design Practices Checklist.....</b>                        | <b>4-6</b>  |
| <b>Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume.....</b> | <b>4-7</b>  |
| <b>Form 4.2-2 Summary of Hydromodification Assessment .....</b>               | <b>4-8</b>  |
| <b>Form 4.2-3 Hydromodification Assessment for Runoff Volume.....</b>         | <b>4-9</b>  |
| <b>Form 4.2-4 Hydromodification Assessment for Time of Concentration.....</b> | <b>4-10</b> |

|                                                                                               |             |
|-----------------------------------------------------------------------------------------------|-------------|
| <b>Form 4.2-5 Hydromodification Assessment for Peak Runoff .....</b>                          | <b>4-11</b> |
| <b>Form 4.3-1 Infiltration BMP Feasibility.....</b>                                           | <b>4-13</b> |
| <b>Form 4.3-2 Site Design BMP .....</b>                                                       | <b>4-14</b> |
| <b>Form 4.3-3 Infiltration LID BMP .....</b>                                                  | <b>4-17</b> |
| <b>Form 4.3-4 Selection and Evaluation of Biotreatment BMP .....</b>                          | <b>4-19</b> |
| <b>Form 4.3-5 Volume Based Biotreatment – Bioretention and Planter Boxes w/Underdrains ..</b> | <b>4-20</b> |
| <b>Form 4.3-6 Volume Based Biotreatment- Constructed Wetlands and Extended Detention ...</b>  | <b>4-21</b> |
| <b>Form 4.3-7 Flow Based Biotreatment.....</b>                                                | <b>4-22</b> |
| <b>Form 4.3-8 Conformance Summary and Alternative Compliance Volume Estimate .....</b>        | <b>4-23</b> |
| <b>Form 4.3-9 Hydromodification Control BMP .....</b>                                         | <b>4-24</b> |
| <b>Form 5-1 BMP Inspection and Maintenance.....</b>                                           | <b>5-1</b>  |

## Section I – Introduction

This WQMP template has been prepared specifically for the Phase II Small MS4 General Permit in the Mojave River Watershed. This location is within the jurisdiction of the Lahontan Regional Water Quality Control Board (LRWQCB) only. This document should not be confused with the WQMP template for the Santa Ana Phase I area of San Bernardino County.

WQMP preparers must refer to the MS4 Permit for the Mojave Watershed WQMP template and Technical Guidance (TGD) document found at: <http://cms.sbcounty.gov/dpw/Land/NPDES.aspx> to find pertinent arid region and Mojave River Watershed specific references and requirements.

## Section 1 Discretionary Permit(s)

| <b>Form 1-1 Project Information</b>                                                                         |                                         |                                                                                                                                                                                                                       |                 |                             |                         |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------|-------------------------|
| Project Name                                                                                                |                                         | Fisher Construction GTS Cold Storage                                                                                                                                                                                  |                 |                             |                         |
| Project Owner Contact Name:                                                                                 |                                         | Green Trucking Solutions LLC                                                                                                                                                                                          |                 |                             |                         |
| Mailing Address:                                                                                            | 14816 Valley Blvd.<br>Fontana, CA 92335 |                                                                                                                                                                                                                       | E-mail Address: | ilnaz@hubgts.com            | Telephone: 888-328-3898 |
| Permit/Application Number(s):                                                                               |                                         |                                                                                                                                                                                                                       |                 | Tract/Parcel Map Number(s): | APN: 0463-231-06        |
| Additional Information/<br>Comments:                                                                        |                                         |                                                                                                                                                                                                                       |                 |                             |                         |
| Description of Project:                                                                                     |                                         | Proposed project consists of new development approximately 18.75 acre for a cold storage facility. The current site is vacant. Lot breakdown: 8.84 acre of roof, 7.91 acres of hardscape, and 2.0 acres of landscape. |                 |                             |                         |
| Provide summary of Conceptual WQMP conditions (if previously submitted and approved). Attach complete copy. |                                         |                                                                                                                                                                                                                       |                 |                             |                         |

## Section 2 Project Description

### 2.1 Project Information

This section of the WQMP should provide the information listed below. The information provided for Conceptual/ Preliminary WQMP should give sufficient detail to identify the major proposed site design and LID BMPs and other anticipated water quality features that impact site planning. Final Project WQMP must specifically identify all BMP incorporated into the final site design and provide other detailed information as described herein.

The purpose of this information is to help determine the applicable development category, pollutants of concern, watershed description, and long-term maintenance responsibilities for the project, and any applicable water quality credits. This information will be used in conjunction with the information in Section 3, Site Description, to establish the performance criteria and to select the LID BMP or other BMP for the project or other alternative programs that the project will participate in, which are described in Section 4.

#### 2.1.1 Project Sizing Categorization

If the Project is greater than 5,000 square feet, and not on the excluded list as found on Section 1.4 of the TGD, the Project is a Regulated Development Project.

If the Project is creating and/or replacing greater than 2,500 square feet but less than 5,000 square feet of impervious surface area, then it is considered a Site Design Only project. This criterion is applicable to all development types including detached single-family homes that create and/or replace greater than 2,500 square feet of impervious area and are not part of a larger plan of development.

#### Form 2.1-1 Description of Proposed Project

<sup>1</sup> Regulated Development Project Category (Select all that apply):

|                                                                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                                                     |                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input checked="" type="checkbox"/> #1 New development involving the creation of 5,000 ft <sup>2</sup> or more of impervious surface collectively over entire site | <input type="checkbox"/> #2 Significant re-development involving the addition or replacement of 5,000 ft <sup>2</sup> or more of impervious surface on an already developed site | <input type="checkbox"/> #3 Road Project – any road, sidewalk, or bicycle lane project that creates greater than 5,000 square feet of contiguous impervious surface | <input type="checkbox"/> #4 LUPs – linear underground/overhead projects that has a discrete location with 5,000 sq. ft. or more new constructed impervious surface |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Site Design Only (Project Total Square Feet > 2,500 but < 5,000 sq.ft ) *Will require source control Site Design LID BMPs and other LIP requirements. See section 4. (Please go to Forms 4.1-3 and 4.3-2)*

|                                               |         |                                        |   |                        |      |
|-----------------------------------------------|---------|----------------------------------------|---|------------------------|------|
| <sup>2</sup> Project Area (ft <sup>2</sup> ): | 816,750 | <sup>3</sup> Number of Dwelling Units: | 0 | <sup>4</sup> SIC Code: | 4222 |
|-----------------------------------------------|---------|----------------------------------------|---|------------------------|------|

<sup>5</sup> Is Project going to be phased? Yes  No  *If yes, ensure that the WQMP evaluates each phase as a distinct DA, requiring LID BMPs to address runoff at time of completion.*

## 2.2 Property Ownership/Management

Describe the ownership/management of all portions of the project and site. State whether any infrastructure will transfer to public agencies (City, County, Caltrans, etc.) after project completion. State if a homeowners or property owners association will be formed and be responsible for the long-term maintenance of project stormwater facilities. Describe any lot-level stormwater features that will be the responsibility of individual property owners.

### Form 2.2-1 Property Ownership/Management

Describe property ownership/management responsible for long-term maintenance of WQMP stormwater facilities:

Green Trucking Solutions LLC  
14816 Valley Blvd. Fontana CA 92335  
Contact: Ilnaz Patrick, COO  
[ilnaz@hubgts.com](mailto:ilnaz@hubgts.com)  
888-328-3898

## 2.3 Potential Stormwater Pollutants

Best Management Practices (BMP) measures for pollutant generating activities and sources shall be designed consistent with recommendations from the CASQA Stormwater BMP Handbook for New Development and Redevelopment (or an equivalent manual). Pollutant generating activities must be considered when determining the overall pollutants of concern for the Project as presented in Form 2.3-1.

Determine and describe expected stormwater pollutants of concern based on land uses and site activities (refer to Table 3-2 in the TGD for WQMP).

| Form 2.3-1 Pollutants of Concern |                                                |                            |                                                                                                                                                                                                        |
|----------------------------------|------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pollutant                        | Please check:<br>E=Expected, N=Not<br>Expected |                            | Additional Information and Comments                                                                                                                                                                    |
| Pathogens (Bacterial / Virus)    | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include animal waste.                                                                                                                           |
| Nutrients - Phosphorous          | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include fertilizers and eroded soils.                                                                                                           |
| Nutrients - Nitrogen             | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include fertilizers and eroded soils.                                                                                                           |
| Noxious Aquatic Plants           | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include fertilizers and eroded soils.                                                                                                           |
| Sediment                         | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include eroded soils.                                                                                                                           |
| Metals                           | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include brake pad and tire tread wear associated with driving.                                                                                  |
| Oil and Grease                   | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include petroleum hydrocarbon products, motor products from leaking vehicles, esters, oils, fats, waxes, and high molecular-weight fatty acids. |
| Trash/Debris                     | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include paper, plastic, polystyrene packing foam, and aluminum materials.                                                                       |
| Pesticides / Herbicides          | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include fertilizers and pest sprays.                                                                                                            |
| Organic Compounds                | E <input checked="" type="checkbox"/>          | N <input type="checkbox"/> | Per section 3.3 of the TGD for WQMP, potential sources include solvents and cleaning compounds.                                                                                                        |
| Other:                           | E <input type="checkbox"/>                     | N <input type="checkbox"/> |                                                                                                                                                                                                        |
| Other:                           | E <input type="checkbox"/>                     | N <input type="checkbox"/> |                                                                                                                                                                                                        |
| Other:                           | E <input type="checkbox"/>                     | N <input type="checkbox"/> |                                                                                                                                                                                                        |

## Section 3 Site and Watershed Description

Describe the project site conditions that will facilitate the selection of BMP through an analysis of the physical conditions and limitations of the site and its receiving waters. Identify distinct drainage areas (DA) that collect flow from a portion of the site and describe how runoff from each DA (and sub-watershed Drainage Management Areas (DMAs)) is conveyed to the site outlet(s). Refer to Section 3.2 in the TGD for WQMP. The form below is provided as an example. Then complete Forms 3.2 and 3.3 for each DA on the project site. **If the project has more than one drainage area for stormwater management, then complete additional versions of these forms for each DA / outlet. A map presenting the DMAs must be included as an appendix to the WQMP document.**

### Form 3-1 Site Location and Hydrologic Features

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                 |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| Site coordinates <i>take GPS measurement at approximate center of site</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Latitude<br>34.5952895902544                                                                  | Longitude -<br>117.190456970451 | Thomas Bros Map page |
| <p><b>1</b> San Bernardino County climatic region: <input checked="" type="checkbox"/> Desert</p> <p><b>2</b> Does the site have more than one drainage area (DA): Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> If no, proceed to Form 3-2. If yes, then use this form to show a conceptual schematic describing DMAs and hydrologic feature connecting DMAs to the site outlet(s). An example is provided below that can be modified for proposed project or a drawing clearly showing DMA and flow routing may be attached</p> <div style="text-align: center; margin-top: 20px;"> <pre> graph TD     DA1[DA-1] --&gt; BMP1[BMP-1]     </pre> </div> |                                                                                               |                                 |                      |
| Conveyance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Briefly describe on-site drainage features to convey runoff that is not retained within a DMA |                                 |                      |
| DA-1 to BMP-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drainage area drains to an underground infiltration system.                                   |                                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                 |                      |

## Form 3-2 Existing Hydrologic Characteristics for Drainage Area 1

|                                                                                                                                                                                                                                                        |         |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| For Drainage Area 1's, provide the following characteristics                                                                                                                                                                                           | DA-1    |  |  |  |
| <b>1</b> DA drainage area (ft <sup>2</sup> )                                                                                                                                                                                                           | 816,750 |  |  |  |
| <b>2</b> Existing site impervious area (ft <sup>2</sup> )                                                                                                                                                                                              | 0       |  |  |  |
| <b>3</b> Antecedent moisture condition <i>For desert areas, use <a href="http://www.sbcounty.gov/dpw/floodcontrol/pdf/20100412_map.pdf">http://www.sbcounty.gov/dpw/floodcontrol/pdf/20100412_map.pdf</a></i>                                          | II      |  |  |  |
| <b>4</b> Hydrologic soil group <i>Refer to County Hydrology Manual Addendum for Arid Regions – <a href="http://www.sbcounty.gov/dpw/floodcontrol/pdf/20100412_addendum.pdf">http://www.sbcounty.gov/dpw/floodcontrol/pdf/20100412_addendum.pdf</a></i> | B       |  |  |  |
| <b>5</b> Longest flowpath length (ft)                                                                                                                                                                                                                  | 1417    |  |  |  |
| <b>6</b> Longest flowpath slope (ft/ft)                                                                                                                                                                                                                | 0.011   |  |  |  |
| <b>7</b> Current land cover type(s) <i>Select from Fig C-3 of Hydrology Manual</i>                                                                                                                                                                     | Desert  |  |  |  |
| <b>8</b> Pre-developed pervious area condition: <i>Based on the extent of wet season vegetated cover good &gt;75%; Fair 50-75%; Poor &lt;50% Attach photos of site to support rating</i>                                                               | N/A     |  |  |  |

| <b>Form 3-3 Watershed Description for Drainage Area</b>                                                                                                                                                                       |                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receiving waters<br><br>Refer to CWRCB site:<br><br><a href="http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml">http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml</a> | Mojave River (Mojave Forks Reservoir outlet to Upper Narrows)<br><br>West Fork Mojave River below Silverwood Lake                                                                                                                               |
| Applicable TMDLs<br><br><a href="http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml">http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml</a>                             |                                                                                                                                                                                                                                                 |
| 303(d) listed impairments<br><br><a href="http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml">http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml</a>                    | Mojave River (Mojave Forks Reservoir outlet to Upper Narrows)-Fluoride, Sodium, and Sulfates<br><br>West Fork Mojave River below Silverwood Lake-Chloride, Sodium, Sulfates, and Total Dissolved Solids<br><br>Silverwood Lake-Mercury and PCBs |
| Environmentally Sensitive Areas (ESA)<br><br>Refer to <i>Watershed Mapping Tool</i> –<br><br><a href="http://sbcounty.permittrack.com/WAP">http://sbcounty.permittrack.com/WAP</a>                                            |                                                                                                                                                                                                                                                 |
| Hydromodification Assessment                                                                                                                                                                                                  | <input type="checkbox"/> Yes Complete Hydromodification Assessment. Include Forms 4.2-2 through Form 4.2-5 and Hydromodification BMP Form 4.3-9 in submittal<br><br><input checked="" type="checkbox"/> No                                      |

## Section 4 Best Management Practices (BMP)

### 4.1 Source Control and Site Design BMPs

The information and data in this section are required for both Regulated Development and Site Design Only Projects. Source Control and Site Design BMPs are the basis of site-specific pollution management.

#### 4.1.1 Source Control BMPs

Non-structural and structural source control BMPs are required to be incorporated into all new development and significant redevelopment projects. Form 4.1-1 and 4.1-2 are used to describe specific source control BMPs used in the WQMP or to explain why a certain BMP is not applicable. Table 7-3 of the TGD for WQMP provides a list of applicable source control BMP for projects with specific types of potential pollutant sources or activities. The source control BMP in this table must be implemented for projects with these specific types of potential pollutant sources or activities.

The preparers of this WQMP have reviewed the source control BMP requirements for new development and significant redevelopment projects. The preparers have also reviewed the specific BMP required for project as specified in Forms 4.1-1 and 4.1-2. All applicable non-structural and structural source control BMP shall be implemented in the project.

The identified list of source control BMPs correspond to the CASQA Stormwater BMP Handbook for New Development and Redevelopment.

| Form 4.1-1 Non-Structural Source Control BMPs |                                                                        |                                     |                                     |                                                                                                                                                                                         |
|-----------------------------------------------|------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identifier                                    | Name                                                                   | Check One                           |                                     | Describe BMP Implementation OR,<br>if not applicable, state reason                                                                                                                      |
|                                               |                                                                        | Included                            | Not Applicable                      |                                                                                                                                                                                         |
| N1                                            | Education of Property Owners, Tenants and Occupants on Stormwater BMPs | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | The Property Owner will provide BMP educational information materials to any employees, tenants (if any), and occupants.                                                                |
| N2                                            | Activity Restrictions                                                  | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Activity restrictions will be imposed by the owner to limit exposure of stormwater to potential pollutants. Activity restrictions include limiting the site usage for its intended use. |
| N3                                            | Landscape Management BMPs                                              | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Owner will ensure landscaping and irrigation is properly maintained.                                                                                                                    |
| N4                                            | BMP Maintenance                                                        | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | The property owner will ensure regular inspection, repair, and maintenance of BMP.                                                                                                      |
| N5                                            | Title 22 CCR Compliance (How development will comply)                  | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                                     |
| N6                                            | Local Water Quality Ordinances                                         | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Owner will comply with local water ordinances.                                                                                                                                          |
| N7                                            | Spill Contingency Plan                                                 | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                                     |
| N8                                            | Underground Storage Tank Compliance                                    | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                                     |
| N9                                            | Hazardous Materials Disclosure Compliance                              | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                                     |

### Form 4.1-1 Non-Structural Source Control BMPs

| Identifier | Name                                                        | Check One                           |                                     | Describe BMP Implementation OR,<br>if not applicable, state reason                                                                                                                            |
|------------|-------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                             | Included                            | Not<br>Applicable                   |                                                                                                                                                                                               |
| N10        | Uniform Fire Code Implementation                            | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                                           |
| N11        | Litter/Debris Control Program                               | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Owner will ensure weekly inspection and clean up for litter and debris.                                                                                                                       |
| N12        | Employee Training                                           | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Owner will ensure that employees are trained on BMPs.                                                                                                                                         |
| N13        | Housekeeping of Loading Docks                               | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                                           |
| N14        | Catch Basin Inspection Program                              | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Owner will ensure catch basins are regularly inspected, repair, and maintained.                                                                                                               |
| N15        | Vacuum Sweeping of Private Streets and<br>Parking Lots      | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Parking areas shall be vacummmed and swepted periodically.                                                                                                                                    |
| N16        | Other Non-structural Measures for Public<br>Agency Projects | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                                           |
| N17        | Comply with all other applicable NPDES<br>permits           | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | The proposed site will comply with all NPDES permit requirements through the implementation of a Storm Water Pollution Prevention Plan (SWPPP) and this Water Quality Management Plan (WQMP). |

### Form 4.1-2 Structural Source Control BMPs

| Identifier | Name                                                                                                                                                                                           | Check One                           |                                     | Describe BMP Implementation OR,<br>If not applicable, state reason                                                                                                               |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                | Included                            | Not Applicable                      |                                                                                                                                                                                  |
| S1         | Provide storm drain system stenciling and signage (CASQA New Development BMP Handbook SD-13)                                                                                                   | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | All storm drain inlets and catch basins will be labeled. Stenciled labels shall state "No Dumping – Drains to River" or similar message discouraging any litter dumping.         |
| S2         | Design and construct outdoor material storage areas to reduce pollution introduction (CASQA New Development BMP Handbook SD-34)                                                                | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                              |
| S3         | Design and construct trash and waste storage areas to reduce pollution introduction (CASQA New Development BMP Handbook SD-32)                                                                 | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                              |
| S4         | Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control (Statewide Model Landscape Ordinance; CASQA New Development BMP Handbook SD-12) | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Owner will ensure landscaping and irrigation is properly maintained. Irrigation controls shall include rain-triggered shutoff devices to prevent irrigation after precipitation. |
| S5         | Finish grade of landscaped areas at a minimum of 1-2 inches below top of curb, sidewalk, or pavement                                                                                           | <input checked="" type="checkbox"/> | <input type="checkbox"/>            | Landscape areas will be a minimum of 1 inch below adjacent impervious areas.                                                                                                     |
| S6         | Protect slopes and channels and provide energy dissipation (CASQA New Development BMP Handbook SD-10)                                                                                          | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                              |
| S7         | Covered dock areas (CASQA New Development BMP Handbook SD-31)                                                                                                                                  | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                              |
| S8         | Covered maintenance bays with spill containment plans (CASQA New Development BMP Handbook SD-31)                                                                                               | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                              |
| S9         | Vehicle wash areas with spill containment plans (CASQA New Development BMP Handbook SD-33)                                                                                                     | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                              |
| S10        | Covered outdoor processing areas (CASQA New Development BMP Handbook SD-36)                                                                                                                    | <input type="checkbox"/>            | <input checked="" type="checkbox"/> | N/A                                                                                                                                                                              |

## Form 4.1-2 Structural Source Control BMPs

| Identifier | Name                                                                                         | Check One                |                                     | Describe BMP Implementation OR,<br>If not applicable, state reason |
|------------|----------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|--------------------------------------------------------------------|
|            |                                                                                              | Included                 | Not Applicable                      |                                                                    |
| S11        | Equipment wash areas with spill containment plans (CASQA New Development BMP Handbook SD-33) | <input type="checkbox"/> | <input checked="" type="checkbox"/> | N/A                                                                |
| S12        | Fueling areas (CASQA New Development BMP Handbook SD-30)                                     | <input type="checkbox"/> | <input checked="" type="checkbox"/> | N/A                                                                |
| S13        | Hillside landscaping (CASQA New Development BMP Handbook SD-10)                              | <input type="checkbox"/> | <input checked="" type="checkbox"/> | N/A                                                                |
| S14        | Wash water control for food preparation areas                                                | <input type="checkbox"/> | <input checked="" type="checkbox"/> | N/A                                                                |
| S15        | Community car wash racks (CASQA New Development BMP Handbook SD-33)                          | <input type="checkbox"/> | <input checked="" type="checkbox"/> | N/A                                                                |

## 4.1.2 Site Design BMPs

As part of the planning phase of a project, the site design practices associated with new LID requirements in the Phase II Small MS4 Permit must be considered. Site design BMPs can result in smaller DCV to be managed by both LID and hydromodification control BMPs by reducing runoff generation.

As is stated in the Permit, it is necessary to evaluate site conditions such as soil type(s), existing vegetation and flow paths will influence the overall site design.

Describe site design and drainage plan including:

- A narrative of site design practices utilized or rationale for not using practices
- A narrative of how site plan incorporates preventive site design practices
- Include an attached Site Plan layout which shows how preventative site design practices are included in WQMP

Refer to Section 5.2 of the TGD for WQMP for more details.

### Form 4.1-3 Site Design Practices Checklist

#### Site Design Practices

*If yes, explain how preventative site design practice is addressed in project site plan. If no, other LID BMPs must be selected to meet targets*

Minimize impervious areas: Yes  No

Explanation: Impervious area has been minimized as much as possible for the proposed use of this site.

Maximize natural infiltration capacity; Including improvement and maintenance of soil: Yes  No

Explanation: Maximized natural infiltration capacity by incorporating a design that promotes water retention through placement of proposed landscape and infiltration BMPs.

Preserve existing drainage patterns and time of concentration: Yes  No

Explanation: Existing drainage patterns and time of concentration have been preserved as much as possible through the drainage design and flow direction.

Disconnect impervious areas. Including rerouting of rooftop drainage pipes to drain stormwater to storage or infiltration BMPs instead of to storm drain: Yes  No

Explanation: Impervious areas have been disconnected as much as possible for this site by rerouting drainage to pipes and infiltration BMP.

Use of Porous Pavement: Yes  No

Explanation: N/A

Protect existing vegetation and sensitive areas: Yes  No

Explanation: N/A

Re-vegetate disturbed areas. Including planting and preservation of drought tolerant vegetation: Yes  No

Explanation: Disturbed areas will be vegetated through the proposed landscape.

## MOJAVE RIVER WATERSHED Water Quality Management Plan (WQMP)

---

|                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minimize unnecessary compaction in stormwater retention/infiltration basin/trench areas: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/><br>Explanation: Stormwater BMP areas will be marked with flagging tape to minimize compaction and maximize natural infiltration capacity.                    |
| Utilize naturalized/rock-lined drainage swales in place of underground piping or imperviously lined swales: Yes <input type="checkbox"/> No <input checked="" type="checkbox"/><br>Explanation: Vegetated swales will not be used on this project. LID BMP selected to meet target is an underground infiltration system. |
| Stake off areas that will be used for landscaping to minimize compaction during construction: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/><br>Explanation: Landscape areas will be marked with flagging to minimize compaction and maximize natural infiltration capacity.                         |
| Use of Rain Barrels and Cisterns, Including the use of on-site water collection systems: Yes <input type="checkbox"/> No <input checked="" type="checkbox"/><br>Explanation: N/A                                                                                                                                          |
| Stream Setbacks. Includes a specified distance from an adjacent stream: Yes <input type="checkbox"/> No <input checked="" type="checkbox"/><br>Explanation: N/A                                                                                                                                                           |

It is noted that, in the Phase II Small MS4 Permit, site design elements for green roofs and vegetative swales are required. Due to the local climatology in the Mojave River Watershed, proactive measures are taken to maximize the amount of drought tolerant vegetation. It is not practical in this region to have green roofs or vegetative swales. As part of site design the project proponent should utilize locally recommended vegetation types for landscaping. Typical landscaping recommendations are found in following local references:

### **San Bernardino County Special Districts:**

Guide to High Desert Landscaping -

<http://www.specialdistricts.org/Modules/ShowDocument.aspx?documentid=795>

Recommended High-Desert Plants -

<http://www.specialdistricts.org/modules/showdocument.aspx?documentid=553>

### **Mojave Water Agency:**

Desert Ranch: <http://www.mojavewater.org/files/desertranchgardenprototype.pdf>

Summertree: <http://www.mojavewater.org/files/Summertree-Native-Plant-Brochure.pdf>

Thornless Garden: <http://www.mojavewater.org/files/thornlessgardenprototype.pdf>

Mediterranean Garden: <http://www.mojavewater.org/files/mediterraneangardenprototype.pdf>

Lush and Efficient Garden: <http://www.mojavewater.org/files/lushandefficientgardenprototype.pdf>

Alliance for Water Awareness and Conservation (AWAC) outdoor tips – <http://hdawac.org/save-outdoors.html>

## 4.2 Treatment BMPs

After implementation and design of both Source Control and Site Design BMPs, any remaining runoff from impervious DMAs must be directed to one or more on-site, treatment BMPs (LID or biotreatment) designed to infiltrate, evapotranspire, and/or bioretain the amount of runoff specified in Permit Section E.12.e (ii)(c) Numeric Sizing Criteria for Storm Water Retention and Treatment.

### 4.2.1 Project Specific Hydrology Characterization

The purpose of this section of the Project WQMP is to establish targets for post-development hydrology based on performance criteria specified in the Phase II Small MS4 Permit. These targets include runoff volume for water quality control (referred to as LID design capture volume), and runoff volume, time of concentration, and peak runoff for protection from hydromodification.

*If the project has more than one outlet for stormwater runoff, then complete additional versions of these forms for each DA / outlet.*

*It is noted that in the Phase II Small MS4 Permit jurisdictions, the LID BMP Design Capture Volume criteria is based on the 2-year rain event. The hydromodification performance criterion is based on the 10-year rain event.*

Methods applied in the following forms include:

- For LID BMP Design Capture Volume (DCV), San Bernardino County requires use of the P<sub>6</sub> method (Form 4.2-1) For pre- and post-development hydrologic calculation, San Bernardino County requires the use of the Rational Method (San Bernardino County Hydrology Manual Section D). Forms 4.2-2 through Form 4.2-5 calculate hydrologic variables including runoff volume, time of concentration, and peak runoff from the project site pre- and post-development using the Hydrology Manual Rational Method approach. For projects greater than 640 acres (1.0 mi<sup>2</sup>), the Rational Method and these forms should not be used. For such projects, the Unit Hydrograph Method (San Bernardino County Hydrology Manual Section E) shall be applied for hydrologic calculations for hydromodification performance criteria.

Refer to Section 4 in the TGD for WQMP for detailed guidance and instructions.

| <b>Form 4.2-1 LID BMP Performance Criteria for Design Capture Volume (DA 1)</b>                                                                                                                                                                                                                                                                                                                           |                                                                                             |                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <sup>1</sup> Project area DA 1 (ft <sup>2</sup> ):<br>816,750                                                                                                                                                                                                                                                                                                                                             | <sup>2</sup> Imperviousness after applying preventative site design practices (Imp%): 89.33 | <sup>3</sup> Runoff Coefficient (Rc): _0.721<br>$R_c = 0.858(Imp\%)^{.93} - 0.78(Imp\%)^{.92} + 0.774(Imp\%) + 0.04$ |
| <sup>4</sup> Determine 1-hour rainfall depth for a 2-year return period P <sub>2yr-1hr</sub> (in): 0.341 <a href="http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html">http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</a>                                                                                                                                                                            |                                                                                             |                                                                                                                      |
| <sup>5</sup> Compute P <sub>6</sub> , Mean 6-hr Precipitation (inches): 0.421<br><i>P<sub>6</sub> = Item 4 * C<sub>1</sub>, where C<sub>1</sub> is a function of site climatic region specified in Form 3-1 Item 1 ( Desert = 1.2371)</i>                                                                                                                                                                 |                                                                                             |                                                                                                                      |
| <sup>6</sup> Drawdown Rate<br><i>Use 48 hours as the default condition. Selection and use of the 24 hour drawdown time condition is subject to approval by the local jurisdiction. The necessary BMP footprint is a function of drawdown time. While shorter drawdown times reduce the performance criteria for LID BMP design capture volume, the depth of water that can be stored is also reduced.</i> |                                                                                             | 24-hrs <input type="checkbox"/><br>48-hrs <input checked="" type="checkbox"/>                                        |
| <sup>7</sup> Compute design capture volume, DCV (ft <sup>3</sup> ): 40,555<br><i>DCV = 1/12 * [Item 1* Item 3 *Item 5 * C<sub>2</sub>], where C<sub>2</sub> is a function of drawdown rate (24-hr = 1.582; 48-hr = 1.963)<br/>Compute separate DCV for each outlet from the project site per schematic drawn in Form 3-1 Item 2</i>                                                                       |                                                                                             |                                                                                                                      |

| <b>Form 4.2-2 Summary of Hydromodification Assessment (DA 1)</b>                                                                                                                                                                                                                                        |                                       |                                       |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Is the change in post- and pre- condition flows captured on-site? : Yes <input type="checkbox"/> No <input checked="" type="checkbox"/>                                                                                                                                                                 |                                       |                                       |                                       |
| If "Yes", then complete Hydromodification assessment of site hydrology for 10yr storm event using Forms 4.2-3 through 4.2-5 and insert results below ( <i>Forms 4.2-3 through 4.2-5 may be replaced by computer software analysis based on the San Bernardino County Hydrology Manual- Addendum 1</i> ) |                                       |                                       |                                       |
| If "No," then proceed to Section 4.3 BMP Selection and Sizing                                                                                                                                                                                                                                           |                                       |                                       |                                       |
| Condition                                                                                                                                                                                                                                                                                               | Runoff Volume (ft <sup>3</sup> )      | Time of Concentration (min)           | Peak Runoff (cfs)                     |
| Pre-developed                                                                                                                                                                                                                                                                                           | <b>1</b><br><i>Form 4.2-3 Item 12</i> | <b>2</b><br><i>Form 4.2-4 Item 13</i> | <b>3</b><br><i>Form 4.2-5 Item 10</i> |
| Post-developed                                                                                                                                                                                                                                                                                          | <b>4</b><br><i>Form 4.2-3 Item 13</i> | <b>5</b><br><i>Form 4.2-4 Item 14</i> | <b>6</b><br><i>Form 4.2-5 Item 14</i> |
| Difference                                                                                                                                                                                                                                                                                              | <b>7</b><br><i>Item 4 – Item 1</i>    | <b>8</b><br><i>Item 2 – Item 5</i>    | <b>9</b><br><i>Item 6 – Item 3</i>    |
| Difference<br>(as % of pre-developed)                                                                                                                                                                                                                                                                   | <b>10</b> %<br><i>Item 7 / Item 1</i> | <b>11</b> %<br><i>Item 8 / Item 2</i> | <b>12</b> %<br><i>Item 9 / Item 3</i> |

### Form 4.2-3 Hydromodification Assessment for Runoff Volume (DA 1)

| <b>Weighted Curve Number</b><br><b>Determination for:</b><br><u>Pre-developed DA</u>                                                                                                                   | DMA A | DMA B                                                                                       | DMA C | DMA D | DMA E | DMA F                                                                              | DMA G | DMA H |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------|-------|-------|-------|------------------------------------------------------------------------------------|-------|-------|
| <b>1a</b> Land Cover type                                                                                                                                                                              |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>2a</b> Hydrologic Soil Group (HSG)                                                                                                                                                                  |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>3a</b> DMA Area, ft <sup>2</sup> <i>sum of areas of DMA should equal area of DA</i>                                                                                                                 |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>4a</b> Curve Number (CN) <i>use Items 1 and 2 to select the appropriate CN from Appendix C-2 of the TGD for WQMP</i>                                                                                |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>Weighted Curve Number</b><br><b>Determination for:</b><br><u>Post-developed DA</u>                                                                                                                  | DMA A | DMA B                                                                                       | DMA C | DMA D | DMA E | DMA F                                                                              | DMA G | DMA H |
| <b>1b</b> Land Cover type                                                                                                                                                                              |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>2b</b> Hydrologic Soil Group (HSG)                                                                                                                                                                  |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>3b</b> DMA Area, ft <sup>2</sup> <i>sum of areas of DMA should equal area of DA</i>                                                                                                                 |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>4b</b> Curve Number (CN) <i>use Items 5 and 6 to select the appropriate CN from Appendix C-2 of the TGD for WQMP</i>                                                                                |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>5</b> Pre-Developed area-weighted CN:                                                                                                                                                               |       | <b>7</b> Pre-developed soil storage capacity, S (in):<br>$S = (1000 / \text{Item 5}) - 10$  |       |       |       | <b>9</b> Initial abstraction, I <sub>a</sub> (in):<br>$I_a = 0.2 * \text{Item 7}$  |       |       |
| <b>6</b> Post-Developed area-weighted CN:                                                                                                                                                              |       | <b>8</b> Post-developed soil storage capacity, S (in):<br>$S = (1000 / \text{Item 6}) - 10$ |       |       |       | <b>10</b> Initial abstraction, I <sub>a</sub> (in):<br>$I_a = 0.2 * \text{Item 8}$ |       |       |
| <b>11</b> Precipitation for 10 yr, 24 hr storm (in):<br><i>Go to: <a href="http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html">http://hdsc.nws.noaa.gov/hdsc/pfds/sa/sca_pfds.html</a></i>            |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>12</b> Pre-developed Volume (ft <sup>3</sup> ):<br>$V_{pre} = (1 / 12) * (\text{Item sum of Item 3}) * [(\text{Item 11} - \text{Item 9})^2 / ((\text{Item 11} - \text{Item 9} + \text{Item 7})]$    |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>13</b> Post-developed Volume (ft <sup>3</sup> ):<br>$V_{pre} = (1 / 12) * (\text{Item sum of Item 3}) * [(\text{Item 11} - \text{Item 10})^2 / ((\text{Item 11} - \text{Item 10} + \text{Item 8})]$ |       |                                                                                             |       |       |       |                                                                                    |       |       |
| <b>14</b> Volume Reduction needed to meet hydromodification requirement, (ft <sup>3</sup> ):<br>$V_{hydro} = (\text{Item 13} * 0.95) - \text{Item 12}$                                                 |       |                                                                                             |       |       |       |                                                                                    |       |       |

## Form 4.2-4 Hydromodification Assessment for Time of Concentration (DA 1)

Compute time of concentration for pre and post developed conditions for each DA (For projects using the Hydrology Manual complete the form below)

| Variables                                                                                                                                     | Pre-developed DA1<br><i>Use additional forms if there are more than 4 DMA</i> |       |       |       | Post-developed DA1<br><i>Use additional forms if there are more than 4 DMA</i> |       |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|-------|-------|--------------------------------------------------------------------------------|-------|-------|-------|
|                                                                                                                                               | DMA A                                                                         | DMA B | DMA C | DMA D | DMA A                                                                          | DMA B | DMA C | DMA D |
| <b>1</b> Length of flowpath (ft) <i>Use Form 3-2 Item 5 for pre-developed condition</i>                                                       |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>2</b> Change in elevation (ft)                                                                                                             |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>3</b> Slope (ft/ft), $S_o = \text{Item 2} / \text{Item 1}$                                                                                 |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>4</b> Land cover                                                                                                                           |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>5</b> Initial DMA Time of Concentration (min) <i>Appendix C-1 of the TGD for WQMP</i>                                                      |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>6</b> Length of conveyance from DMA outlet to project site outlet (ft) <i>May be zero if DMA outlet is at project site outlet</i>          |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>7</b> Cross-sectional area of channel (ft <sup>2</sup> )                                                                                   |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>8</b> Wetted perimeter of channel (ft)                                                                                                     |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>9</b> Manning's roughness of channel (n)                                                                                                   |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>10</b> Channel flow velocity (ft/sec)<br>$V_{fps} = (1.49 / \text{Item 9}) * (\text{Item 7}/\text{Item 8})^{0.67} * (\text{Item 3})^{0.5}$ |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>11</b> Travel time to outlet (min)<br>$T_t = \text{Item 6} / (\text{Item 10} * 60)$                                                        |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>12</b> Total time of concentration (min)<br>$T_c = \text{Item 5} + \text{Item 11}$                                                         |                                                                               |       |       |       |                                                                                |       |       |       |
| <b>13</b> Pre-developed time of concentration (min):                                                                                          | <i>Minimum of Item 12 pre-developed DMA</i>                                   |       |       |       |                                                                                |       |       |       |
| <b>14</b> Post-developed time of concentration (min):                                                                                         | <i>Minimum of Item 12 post-developed DMA</i>                                  |       |       |       |                                                                                |       |       |       |
| <b>15</b> Additional time of concentration needed to meet hydromodification requirement (min):                                                | $T_{C-Hydro} = (\text{Item 13} * 0.95) - \text{Item 14}$                      |       |       |       |                                                                                |       |       |       |

## Form 4.2-5 Hydromodification Assessment for Peak Runoff (DA 1)

| Compute peak runoff for pre- and post-developed conditions                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|-------|--|--|--|--|
| Variables                                                                                                                                                                                                                                                                                                                                                                           | Pre-developed DA to Project Outlet (Use additional forms if more than 3 DMA)                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             | Post-developed DA to Project Outlet (Use additional forms if more than 3 DMA) |       |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | DMA A                                                                                                                                                                                                                                                                                                                                                                               | DMA B                                                                                                                                                                                                                                                                                                                                                                                | DMA C                                                                                                                                                       | DMA A                                                                         | DMA B | DMA C |  |  |  |  |
| <b>1</b> Rainfall Intensity for storm duration equal to time of concentration<br>$I_{peak} = 10^{LOG \text{ Form 4.2-1 Item 4} - 0.7 LOG \text{ Form 4.2-4 Item 5}/60}$                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
| <b>2</b> Drainage Area of each DMA (Acres)<br><i>For DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)</i>                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
| <b>3</b> Ratio of pervious area to total area<br><i>For DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)</i>                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
| <b>4</b> Pervious area infiltration rate (in/hr)<br><i>Use pervious area CN and antecedent moisture condition with Appendix C-3 of the TGD for WQMP</i>                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
| <b>5</b> Maximum loss rate (in/hr)<br>$F_m = \text{Item 3} * \text{Item 4}$<br><i>Use area-weighted <math>F_m</math> from DMA with outlet at project site outlet, include upstream DMA (Using example schematic in Form 3-1, DMA A will include drainage from DMA C)</i>                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
| <b>6</b> Peak Flow from DMA (cfs)<br>$Q_p = \text{Item 2} * 0.9 * (\text{Item 1} - \text{Item 5})$                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
| <b>7</b> Time of concentration adjustment factor for other DMA to site discharge point<br><i>Form 4.2-4 Item 12 DMA / Other DMA upstream of site discharge point (If ratio is greater than 1.0, then use maximum value of 1.0)</i>                                                                                                                                                  | DMA A                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                               | n/a   |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | DMA B                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                      | n/a                                                                                                                                                         |                                                                               |       | n/a   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | DMA C                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             | n/a                                                                           |       | n/a   |  |  |  |  |
| <b>8</b> Pre-developed $Q_p$ at $T_c$ for DMA A:<br>$Q_p = \text{Item 6}_{DMAA} + [\text{Item 6}_{DMAB} * (\text{Item 1}_{DMAA} - \text{Item 5}_{DMAB}) / (\text{Item 1}_{DMAB} - \text{Item 5}_{DMAA}) * \text{Item 7}_{DMAA/2}] + [\text{Item 6}_{DMAC} * (\text{Item 1}_{DMAA} - \text{Item 5}_{DMAC}) / (\text{Item 1}_{DMAC} - \text{Item 5}_{DMA}) * \text{Item 7}_{DMAA/3}]$ | <b>9</b> Pre-developed $Q_p$ at $T_c$ for DMA B:<br>$Q_p = \text{Item 6}_{DMAB} + [\text{Item 6}_{DMAA} * (\text{Item 1}_{DMAB} - \text{Item 5}_{DMAA}) / (\text{Item 1}_{DMAA} - \text{Item 5}_{DMAB}) * \text{Item 7}_{DMAB/1}] + [\text{Item 6}_{DMAC} * (\text{Item 1}_{DMAB} - \text{Item 5}_{DMAC}) / (\text{Item 1}_{DMAC} - \text{Item 5}_{DMA}) * \text{Item 7}_{DMAB/3}]$ | <b>10</b> Pre-developed $Q_p$ at $T_c$ for DMA C:<br>$Q_p = \text{Item 6}_{DMAC} + [\text{Item 6}_{DMAA} * (\text{Item 1}_{DMAC} - \text{Item 5}_{DMAA}) / (\text{Item 1}_{DMAA} - \text{Item 5}_{DMAC}) * \text{Item 7}_{DMAC/1}] + [\text{Item 6}_{DMAB} * (\text{Item 1}_{DMAC} - \text{Item 5}_{DMAB}) / (\text{Item 1}_{DMAB} - \text{Item 5}_{DMA}) * \text{Item 7}_{DMAC/2}]$ | <b>10</b> Peak runoff from pre-developed condition confluence analysis (cfs):<br><i>Maximum of Item 8, 9, and 10 (including additional forms as needed)</i> |                                                                               |       |       |  |  |  |  |
| <b>11</b> Post-developed $Q_p$ at $T_c$ for DMA A:<br><i>Same as Item 8 for post-developed values</i>                                                                                                                                                                                                                                                                               | <b>12</b> Post-developed $Q_p$ at $T_c$ for DMA B:<br><i>Same as Item 9 for post-developed values</i>                                                                                                                                                                                                                                                                               | <b>13</b> Post-developed $Q_p$ at $T_c$ for DMA C:<br><i>Same as Item 10 for post-developed values</i>                                                                                                                                                                                                                                                                               |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
| <b>14</b> Peak runoff from post-developed condition confluence analysis (cfs):<br><i>Maximum of Item 11, 12, and 13 (including additional forms as needed)</i>                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |
| <b>15</b> Peak runoff reduction needed to meet Hydromodification Requirement (cfs):<br>$Q_{p-hydro} = (\text{Item 14} * 0.95) - \text{Item 10}$                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                               |       |       |  |  |  |  |

## 4.3 BMP Selection and Sizing

Complete the following forms for each project site DA to document that the proposed treatment (LID/Bioretention) BMPs conform to the project DCV developed to meet performance criteria specified in the Phase II Small MS4 Permit (WQMP Template Section 4.2). For the LID DCV, the forms are ordered according to hierarchy of BMP selection as required by the Phase II Small MS4 Permit (see Section 5.3 in the TGD for WQMP). The forms compute the following for on-site LID BMP:

- Site Design BMPs (Form 4.3-2)
- Retention and Infiltration BMPs (Form 4.3-3) or
- Biotreatment BMPs (Form 4.3-4).

Please note that the selected BMPs may also be used as dual purpose for on-site, hydromodification mitigation and management.

At the end of each form, additional fields facilitate the determination of the extent of mitigation provided by the specific BMP category, allowing for use of the next category of BMP in the hierarchy, if necessary.

The first step in the analysis, using Section 5.3.2 of the TGD for WQMP, is to complete Forms 4.3-1 and 4.3-3 to determine if retention and infiltration BMPs are infeasible for the project. For each feasibility criterion in Form 4.3-1, if the answer is “Yes,” provide all study findings that includes relevant calculations, maps, data sources, etc. used to make the determination of infeasibility.

Next, complete Form 4.3-2 to determine the feasibility of applicable Site Design BMPs, and, if their implementation is feasible, the extent of mitigation of the DCV.

If no site constraints exist that would limit the type of BMP to be implemented in a DA, evaluate the use of combinations of LID BMPs, including all applicable Site Design BMPs to maximize on-site retention of the DCV. If no combination of BMP can mitigate the entire DCV, implement the single BMP type, or combination of BMP types, that maximizes on-site retention of the DCV within the minimum effective area.

If the combinations of site design, retention and/or infiltration BMPs is unable to mitigate the entire DCV, then the remainder of the volume-based performance criteria that cannot be achieved with site design, retention and/or infiltration BMPs must be managed through biotreatment BMPs. If biotreatment BMPs are used, then they must be sized to provide equivalent effectiveness based on Template Section 4.3.4.

#### **4.3.1 Exceptions to Requirements for Bioretention Facilities**

Contingent on a demonstration that use of bioretention or a facility of equivalent effectiveness is infeasible, other types of biotreatment or media filters (such as tree-box-type biofilters or in-vault media filters) may be used for the following categories of Regulated Projects:

- 1) Projects creating or replacing an acre or less of impervious area, and located in a designated pedestrian-oriented commercial district (i.e., smart growth projects), and having at least 85% of the entire project site covered by permanent structures;
- 2) Facilities receiving runoff solely from existing (pre-project) impervious areas; and
- 3) Historic sites, structures or landscapes that cannot alter their original configuration in order to maintain their historic integrity.

## Form 4.3-1 Infiltration BMP Feasibility (DA 1)

Feasibility Criterion – Complete evaluation for each DA on the Project Site

<sup>1</sup> Would infiltration BMP pose significant risk for groundwater related concerns? Yes  No

*Refer to Section 5.3.2.1 of the TGD for WQMP*

If Yes, Provide basis: (attach)

<sup>2</sup> Would installation of infiltration BMP significantly increase the risk of geotechnical hazards? Yes  No

(Yes, if the answer to any of the following questions is yes, as established by a geotechnical expert):

- The location is less than 50 feet away from slopes steeper than 15 percent
- The location is less than ten feet from building foundations or an alternative setback.
- A study certified by a geotechnical professional or an available watershed study determines that stormwater infiltration would result in significantly increased risks of geotechnical hazards.

If Yes, Provide basis: (attach)

<sup>3</sup> Would infiltration of runoff on a Project site violate downstream water rights? Yes  No

If Yes, Provide basis: (attach)

<sup>4</sup> Is proposed infiltration facility located on hydrologic soil group (HSG) D soils or does the site geotechnical investigation indicate presence of soil characteristics, which support categorization as D soils? Yes  No

If Yes, Provide basis: (attach)

<sup>5</sup> Is the design infiltration rate, after accounting for safety factor of 2.0, below proposed facility less than 0.3 in/hr (accounting for soil amendments)? Yes  No

If Yes, Provide basis: (attach)

<sup>6</sup> Would on-site infiltration or reduction of runoff over pre-developed conditions be partially or fully inconsistent with watershed management strategies as defined in the WAP, or impair beneficial uses? Yes  No

*See Section 3.5 of the TGD for WQMP and WAP*

If Yes, Provide basis: (attach)

<sup>7</sup> Any answer from Item 1 through Item 3 is "Yes": Yes  No

*If yes, infiltration of any volume is not feasible onsite. Proceed to Form 4.3-4, Selection and Evaluation of Biotreatment BMP.*  
*If no, then proceed to Item 8 below.*

<sup>8</sup> Any answer from Item 4 through Item 6 is "Yes": Yes  No

*If yes, infiltration is permissible but is not required to be considered. Proceed to Form 4.3-2, Site Design BMP.*

*If no, then proceed to Item 9, below.*

<sup>9</sup> All answers to Item 1 through Item 6 are "No": Yes  No

*Infiltration of the full DCV is potentially feasible, LID infiltration BMP must be designed to infiltrate the full DCV to the MEP.*  
*Proceed to Form 4.3-2, Site Design BMPs.*

### 4.3.2 Site Design BMP

Section E.12.e. of the Small Phase II MS4 Permit emphasizes the use of LID preventative measures; and the use of Site Design BMPs reduces the portion of the DCV that must be addressed in downstream BMPs. Therefore, all applicable Site Design shall be provided except where they are mutually exclusive with each other, or with other BMPs. Mutual exclusivity may result from overlapping BMP footprints such that either would be potentially feasible by itself, but both could not be implemented. Please note that while there are no numeric standards regarding the use of Site Design BMPs. If a project cannot feasibly meet BMP sizing requirements or cannot fully address hydromodification, feasibility of all applicable Site Design BMPs must be part of demonstrating that the BMP system has been designed to retain the maximum feasible portion of the DCV. Complete Form 4.3-2 to identify and calculate estimated retention volume from implementing site design BMP. Refer to Section 5.4 in the TGD for more detailed guidance.

#### Form 4.3-2 Site Design BMPs (DA 1)

| <sup>1</sup> Implementation of Impervious Area Dispersion BMP (i.e. routing runoff from impervious to pervious areas), excluding impervious areas planned for routing to on-lot infiltration BMP: Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> If yes, complete Items 2-5; If no, proceed to Item 6 | DA DMA<br>BMP Type                                         | DA DMA<br>BMP Type | DA DMA<br>BMP Type<br>(Use additional forms for more BMPs) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------|------------------------------------------------------------|
| <sup>2</sup> Total impervious area draining to pervious area (ft <sup>2</sup> )                                                                                                                                                                                                                                            |                                                            |                    |                                                            |
| <sup>3</sup> Ratio of pervious area receiving runoff to impervious area                                                                                                                                                                                                                                                    |                                                            |                    |                                                            |
| <sup>4</sup> Retention volume achieved from impervious area dispersion (ft <sup>3</sup> ) $V = \text{Item 2} * \text{Item 3} * (0.5/12)$ , assuming retention of 0.5 inches of runoff                                                                                                                                      |                                                            |                    |                                                            |
| <sup>5</sup> Sum of retention volume achieved from impervious area dispersion (ft <sup>3</sup> ):                                                                                                                                                                                                                          | $V_{\text{retention}} = \text{Sum of Item 4 for all BMPs}$ |                    |                                                            |
| <sup>6</sup> Implementation of Localized On-lot Infiltration BMPs (e.g. on-lot rain gardens): Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> If yes, complete Items 7-13 for aggregate of all on-lot infiltration BMP in each DA; If no, proceed to Item 14                                           | DA DMA<br>BMP Type                                         | DA DMA<br>BMP Type | DA DMA<br>BMP Type<br>(Use additional forms for more BMPs) |
| <sup>7</sup> Ponding surface area (ft <sup>2</sup> )                                                                                                                                                                                                                                                                       |                                                            |                    |                                                            |
| <sup>8</sup> Ponding depth (ft) (min. 0.5 ft.)                                                                                                                                                                                                                                                                             |                                                            |                    |                                                            |
| <sup>9</sup> Surface area of amended soil/gravel (ft <sup>2</sup> )                                                                                                                                                                                                                                                        |                                                            |                    |                                                            |
| <sup>10</sup> Average depth of amended soil/gravel (ft) (min. 1 ft.)                                                                                                                                                                                                                                                       |                                                            |                    |                                                            |
| <sup>11</sup> Average porosity of amended soil/gravel                                                                                                                                                                                                                                                                      |                                                            |                    |                                                            |
| <sup>12</sup> Retention volume achieved from on-lot infiltration (ft <sup>3</sup> )                                                                                                                                                                                                                                        |                                                            |                    |                                                            |
| $V_{\text{retention}} = (\text{Item 7} * \text{Item 8}) + (\text{Item 9} * \text{Item 10} * \text{Item 11})$                                                                                                                                                                                                               |                                                            |                    |                                                            |

### Form 4.3-2 cont. Site Design BMPs (DA 1)

**13** Runoff volume retention from on-lot infiltration (ft<sup>3</sup>):

$V_{\text{retention}} = \text{Sum of Item 12 for all BMPs}$

**14** Implementation of Street Trees: Yes  No   
*If yes, complete Items 14-18. If no, proceed to Item 19*

DA      DMA  
BMP Type

DA      DMA  
BMP Type

DA      DMA  
BMP Type  
*(Use additional forms for more BMPs)*

**15** Number of Street Trees

**16** Average canopy cover over impervious area (ft<sup>2</sup>)

**17** Runoff volume retention from street trees (ft<sup>3</sup>)

$V_{\text{retention}} = \text{Item 15} * \text{Item 16} * (0.05/12)$  assume runoff retention of 0.05 inches

**18** Runoff volume retention from street tree BMPs (ft<sup>3</sup>):

$V_{\text{retention}} = \text{Sum of Item 17 for all BMPs}$

**19** Total Retention Volume from Site Design BMPs:

*Sum of Items 5, 13 and 18*

### **4.3.3 Infiltration BMPs**

Use Form 4.3-3 to compute on-site retention of runoff from proposed retention and infiltration BMPs. Volume retention estimates are sensitive to the percolation rate used, which determines the amount of runoff that can be infiltrated within the specified drawdown time. The infiltration safety factor reduces field measured percolation to account for potential inaccuracy associated with field measurements, declining BMP performance over time, and compaction during construction. Appendix C of the TGD for WQMP provides guidance on estimating an appropriate safety factor to use in Form 4.3-3.

If site constraints limit the use of BMPs to a single type and implementation of retention and infiltration BMPs mitigate no more than 40% of the DCV, then they are considered infeasible and the Project Proponent may evaluate the effectiveness of BMPs lower in the LID hierarchy of use (Section 5.5 of the TGD for WQMP).

If implementation of infiltrations BMPs is feasible as determined using Form 4.3-1, then LID infiltration BMPs shall be implemented to the MEP (section 4.1 of the TGD for WQMP).

#### **4.3.3.1 Allowed Variations for Special Site Conditions**

The bioretention system design parameters of this Section may be adjusted for the following special site conditions:

- 1) Facilities located within 10 feet of structures or other potential geotechnical hazards established by the geotechnical expert for the project may incorporate an impervious cutoff wall between the bioretention facility and the structure or other geotechnical hazard.
- 2) Facilities with documented high concentrations of pollutants in underlying soil or groundwater, facilities located where infiltration could contribute to a geotechnical hazard, and facilities located on elevated plazas or other structures may incorporate an impervious liner and may locate the underdrain discharge at the bottom of the subsurface drainage/storage layer (this configuration is commonly known as a “flow-through planter”).
- 3) Facilities located in areas of high groundwater, highly infiltrative soils or where connection of underdrain to a surface drain or to a subsurface storm drain are infeasible, may omit the underdrain.
- 4) Facilities serving high-risk areas such as fueling stations, truck stops, auto repairs, and heavy industrial sites may be required to provide additional treatment to address pollutants of concern unless these high-risk areas are isolated from storm water runoff or bioretention areas with little chance of spill migration.

| <b>Form 4.3-3 Infiltration LID BMP - including underground BMPs (DA 1)</b>                                                                                                                                                                                                                                                                                                                                         |                                                      |                 |                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|----------------------------------------------------------------|
| <p><b>1</b> Remaining LID DCV not met by site design BMP (ft<sup>3</sup>): 40,555 <math>V_{unmet} = \text{Form 4.2-1 Item 7 - Form 4.3-2 Item 19}</math></p>                                                                                                                                                                                                                                                       |                                                      |                 |                                                                |
| BMP Type <i>Use columns to the right to compute runoff volume retention from proposed infiltration BMP (select BMP from Table 5-4 in TGD for WQMP) - Use additional forms for more BMPs</i>                                                                                                                                                                                                                        | DA 1 DMA BMP Type<br>Underground Infiltration System | DA DMA BMP Type | DA DMA BMP Type<br><i>(Use additional forms for more BMPs)</i> |
| <b>2</b> Infiltration rate of underlying soils (in/hr) <i>See Section 5.4.2 and Appendix D of the TGD for WQMP for minimum requirements for assessment methods</i>                                                                                                                                                                                                                                                 | 9.39                                                 |                 |                                                                |
| <b>3</b> Infiltration safety factor <i>See TGD Section 5.4.2 and Appendix D</i>                                                                                                                                                                                                                                                                                                                                    | 2.0                                                  |                 |                                                                |
| <b>4</b> Design percolation rate (in/hr) $P_{design} = \text{Item 2 / Item 3}$                                                                                                                                                                                                                                                                                                                                     | 4.69                                                 |                 |                                                                |
| <b>5</b> Ponded water drawdown time (hr) <i>Copy Item 6 in Form 4.2-1</i>                                                                                                                                                                                                                                                                                                                                          | 48                                                   |                 |                                                                |
| <b>6</b> Maximum ponding depth (ft) <i>BMP specific, see Table 5-4 of the TGD for WQMP for BMP design details</i>                                                                                                                                                                                                                                                                                                  | N/A                                                  |                 |                                                                |
| <b>7</b> Ponding Depth (ft) $d_{BMP} = \text{Minimum of (1/12 * Item 4 * Item 5) or Item 6}$                                                                                                                                                                                                                                                                                                                       | N/A                                                  |                 |                                                                |
| <b>8</b> Infiltrating surface area, $SA_{BMP}$ (ft <sup>2</sup> ) <i>the lesser of the area needed for infiltration of full DCV or minimum space requirements from Table 5.7 of the TGD for WQMP</i>                                                                                                                                                                                                               | N/A                                                  |                 |                                                                |
| <b>9</b> Amended soil depth, $d_{media}$ (ft) <i>Only included in certain BMP types, see Table 5-4 in the TGD for WQMP for reference to BMP design details</i>                                                                                                                                                                                                                                                     | N/A                                                  |                 |                                                                |
| <b>10</b> Amended soil porosity                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                                  |                 |                                                                |
| <b>11</b> Gravel depth, $d_{media}$ (ft) <i>Only included in certain BMP types, see Table 5-4 of the TGD for WQMP for BMP design details</i>                                                                                                                                                                                                                                                                       | N/A                                                  |                 |                                                                |
| <b>12</b> Gravel porosity                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                  |                 |                                                                |
| <b>13</b> Duration of storm as basin is filling (hrs) <i>Typical ~3hrs</i>                                                                                                                                                                                                                                                                                                                                         | N/A                                                  |                 |                                                                |
| <b>14</b> Above Ground Retention Volume (ft <sup>3</sup> ) $V_{retention} = \text{Item 8 * [Item 7 + (Item 9 * Item 10) + (Item 11 * Item 12) + (Item 13 * (Item 4 / 12))]}$                                                                                                                                                                                                                                       | N/A                                                  |                 |                                                                |
| <b>15</b> Underground Retention Volume (ft <sup>3</sup> ) <i>Volume determined using manufacturer's specifications and calculations</i>                                                                                                                                                                                                                                                                            | 40,555                                               |                 |                                                                |
| <b>16</b> Total Retention Volume from LID Infiltration BMPs: 40,555 <i>(Sum of Items 14 and 15 for all infiltration BMP included in plan)</i>                                                                                                                                                                                                                                                                      |                                                      |                 |                                                                |
| <b>17</b> Fraction of DCV achieved with infiltration BMP: 100% $\text{Retention\%} = \text{Item 16 / Form 4.2-1 Item 7}$                                                                                                                                                                                                                                                                                           |                                                      |                 |                                                                |
| <b>18</b> Is full LID DCV retained onsite with combination of hydrologic source control and LID retention/infiltration BMPs? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>                                                                                                                                                                                                                   |                                                      |                 |                                                                |
| <i>If yes, demonstrate conformance using Form 4.3-10; If no, then reduce Item 3, Factor of Safety to 2.0 and increase Item 8, Infiltrating Surface Area, such that the portion of the site area used for retention and infiltration BMPs equals or exceeds the minimum effective area thresholds (Table 5-7 of the TGD for WQMP) for the applicable category of development and repeat all above calculations.</i> |                                                      |                 |                                                                |

#### 4.3.4 Biotreatment BMP

Biotreatment BMPs may be considered if the full LID DCV cannot be met by maximizing retention and infiltration. A key consideration when using biotreatment BMP is the effectiveness of the proposed BMP in addressing the pollutants of concern for the project (see Table 5-5 of the TGD for WQMP).

Use Form 4.3-4 to summarize the potential for volume based and/or flow based biotreatment options to biotreat the remaining unmet LID DCV. Biotreatment computations are included as follows:

- Use Form 4.3-5 to compute biotreatment in small volume based biotreatment BMP (e.g. bioretention w/underdrains);
- Use Form 4.3-6 to compute biotreatment in large volume based biotreatment BMP (e.g. constructed wetlands);
- Use Form 4.3-7 to compute sizing criteria for flow-based biotreatment BMP (e.g. bioswales)

| <b>Form 4.3-4 Selection and Evaluation of Biotreatment BMP (DA 1)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|---------------------------------------------------|-------------------------------------------------|--|-------------------------------------------------|--|
| <b>1</b> Remaining LID DCV not met by site design , or infiltration, BMP for potential biotreatment (ft <sup>3</sup> ):<br><i>Form 4.2-1 Item 7 - Form 4.3-2 Item 19 – Form 4.3-3 Item 16</i>                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   | List pollutants of concern <i>Copy from Form 2.3-1.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
| <b>2</b> Biotreatment BMP Selected<br><i>(Select biotreatment BMP(s) necessary to ensure all pollutants of concern are addressed through Unit Operations and Processes, described in Table 5-5 of the TGD for WQMP)</i>                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   | Volume-based biotreatment<br><i>Use Forms 4.3-5 and 4.3-6 to compute treated volume</i> <table border="0"> <tr> <td><input type="checkbox"/> Bioretention with underdrain</td> <td><input type="checkbox"/> Vegetated swale</td> </tr> <tr> <td><input type="checkbox"/> Planter box with underdrain</td> <td><input type="checkbox"/> Vegetated filter strip</td> </tr> <tr> <td><input type="checkbox"/> Constructed wetlands</td> <td><input type="checkbox"/> Proprietary biotreatment</td> </tr> <tr> <td><input type="checkbox"/> Wet extended detention</td> <td></td> </tr> <tr> <td><input type="checkbox"/> Dry extended detention</td> <td></td> </tr> </table> | <input type="checkbox"/> Bioretention with underdrain | <input type="checkbox"/> Vegetated swale | <input type="checkbox"/> Planter box with underdrain | <input type="checkbox"/> Vegetated filter strip | <input type="checkbox"/> Constructed wetlands | <input type="checkbox"/> Proprietary biotreatment | <input type="checkbox"/> Wet extended detention |  | <input type="checkbox"/> Dry extended detention |  |
| <input type="checkbox"/> Bioretention with underdrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <input type="checkbox"/> Vegetated swale          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
| <input type="checkbox"/> Planter box with underdrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <input type="checkbox"/> Vegetated filter strip   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
| <input type="checkbox"/> Constructed wetlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <input type="checkbox"/> Proprietary biotreatment |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
| <input type="checkbox"/> Wet extended detention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
| <input type="checkbox"/> Dry extended detention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
| <b>3</b> Volume biotreated in volume based biotreatment BMP (ft <sup>3</sup> ):<br><i>Form 4.3-5 Item 15 + Form 4.3-6 Item 13</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | <b>4</b> Compute remaining LID DCV with implementation of volume based biotreatment BMP (ft <sup>3</sup> ):<br><i>Item 1 – Item 3</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   | <b>5</b> Remaining fraction of LID DCV for sizing flow based biotreatment BMP:<br><i>% Item 4 / Item 1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
| <b>6</b> Flow-based biotreatment BMP capacity provided (cfs):<br><i>Use Figure 5-2 of the TGD for WQMP to determine flow capacity required to provide biotreatment of remaining percentage of unmet LID DCV (Item 5), for the project's precipitation zone (Form 3-1 Item 1)</i>                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |
| <b>7</b> Metrics for MEP determination: <ul style="list-style-type: none"> <li>• Provided a WQMP with the portion of site area used for suite of LID BMP equal to minimum thresholds in Table 5-7 of the TGD for WQMP for the proposed category of development: <input type="checkbox"/> <i>If maximized on-site retention BMPs is feasible for partial capture, then LID BMP implementation must be optimized to retain and infiltrate the maximum portion of the DCV possible within the prescribed minimum effective area. The remaining portion of the DCV shall then be mitigated using biotreatment BMP.</i></li> </ul> |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                          |                                                      |                                                 |                                               |                                                   |                                                 |  |                                                 |  |

## Form 4.3-5 Volume Based Biotreatment (DA 1) – Bioretention and Planter Boxes with Underdrains

| Biotreatment BMP Type<br><i>(Bioretention w/underdrain, planter box w/underdrain, other comparable BMP)</i>                                                                                            | DA<br>BMP Type | DMA<br>BMP Type | DA<br>BMP Type<br><i>(Use additional forms for more BMPs)</i> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------------------------------------------------------------|
| <b>1</b> Pollutants addressed with BMP <i>List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in Table 5-5 of the TGD for WQMP</i> |                |                 |                                                               |
| <b>2</b> Amended soil infiltration rate <i>Typical ~ 5.0</i>                                                                                                                                           |                |                 |                                                               |
| <b>3</b> Amended soil infiltration safety factor <i>Typical ~ 2.0</i>                                                                                                                                  |                |                 |                                                               |
| <b>4</b> Amended soil design percolation rate (in/hr) $P_{design} = Item\ 2 / Item\ 3$                                                                                                                 |                |                 |                                                               |
| <b>5</b> Ponded water drawdown time (hr) <i>Copy Item 6 from Form 4.2-1</i>                                                                                                                            |                |                 |                                                               |
| <b>6</b> Maximum ponding depth (ft) <i>see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>                                                                                       |                |                 |                                                               |
| <b>7</b> Ponding Depth (ft) $d_{BMP} = \text{Minimum of } (1/12 * Item\ 4 * Item\ 5) \text{ or Item\ 6}$                                                                                               |                |                 |                                                               |
| <b>8</b> Amended soil surface area (ft <sup>2</sup> )                                                                                                                                                  |                |                 |                                                               |
| <b>9</b> Amended soil depth (ft) <i>see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>                                                                                          |                |                 |                                                               |
| <b>10</b> Amended soil porosity, <i>n</i>                                                                                                                                                              |                |                 |                                                               |
| <b>11</b> Gravel depth (ft) <i>see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>                                                                                               |                |                 |                                                               |
| <b>12</b> Gravel porosity, <i>n</i>                                                                                                                                                                    |                |                 |                                                               |
| <b>13</b> Duration of storm as basin is filling (hrs) <i>Typical ~ 3hrs</i>                                                                                                                            |                |                 |                                                               |
| <b>14</b> Biotreated Volume (ft <sup>3</sup> ) $V_{biotreated} = Item\ 8 * [(Item\ 7/2) + (Item\ 9 * Item\ 10) + (Item\ 11 * Item\ 12) + (Item\ 13 * (Item\ 4 / 12))]$                                 |                |                 |                                                               |
| <b>15</b> Total biotreated volume from bioretention and/or planter box with underdrains BMP:<br><i>Sum of Item 14 for all volume-based BMPs included in this form</i>                                  |                |                 |                                                               |

## Form 4.3-6 Volume Based Biotreatment (DA 1) – Constructed Wetlands and Extended Detention

| Biotreatment BMP Type<br><i>Constructed wetlands, extended wet detention, extended dry detention, or other comparable proprietary BMP. If BMP includes multiple modules (e.g. forebay and main basin), provide separate estimates for storage and pollutants treated in each module.</i>                                                      | DA      DMA<br>BMP Type |       | DA      DMA<br>BMP Type<br><i>(Use additional forms for more BMPs)</i> |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                                                                                                                               | Forebay                 | Basin | Forebay                                                                | Basin |
| <b>1</b> Pollutants addressed with BMP forebay and basin<br><i>List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in Table 5-5 of the TGD for WQMP</i>                                                                                                                   |                         |       |                                                                        |       |
| <b>2</b> Bottom width (ft)                                                                                                                                                                                                                                                                                                                    |                         |       |                                                                        |       |
| <b>3</b> Bottom length (ft)                                                                                                                                                                                                                                                                                                                   |                         |       |                                                                        |       |
| <b>4</b> Bottom area (ft <sup>2</sup> ) $A_{bottom} = \text{Item 2} * \text{Item 3}$                                                                                                                                                                                                                                                          |                         |       |                                                                        |       |
| <b>5</b> Side slope (ft/ft)                                                                                                                                                                                                                                                                                                                   |                         |       |                                                                        |       |
| <b>6</b> Depth of storage (ft)                                                                                                                                                                                                                                                                                                                |                         |       |                                                                        |       |
| <b>7</b> Water surface area (ft <sup>2</sup> )<br>$A_{surface} = (\text{Item 2} + (2 * \text{Item 5} * \text{Item 6})) * (\text{Item 3} + (2 * \text{Item 5} * \text{Item 6}))$                                                                                                                                                               |                         |       |                                                                        |       |
| <b>8</b> Storage volume (ft <sup>3</sup> ) <i>For BMP with a forebay, ensure fraction of total storage is within ranges specified in BMP specific fact sheets, see Table 5-6 of the TGD for WQMP for reference to BMP design details</i><br>$V = \text{Item 6} / 3 * [\text{Item 4} + \text{Item 7} + (\text{Item 4} * \text{Item 7})^{0.5}]$ |                         |       |                                                                        |       |
| <b>9</b> Drawdown Time (hrs) <i>Copy Item 6 from Form 2.1</i>                                                                                                                                                                                                                                                                                 |                         |       |                                                                        |       |
| <b>10</b> Outflow rate (cfs) $Q_{BMP} = (\text{Item 8}_{\text{forebay}} + \text{Item 8}_{\text{basin}}) / (\text{Item 9} * 3600)$                                                                                                                                                                                                             |                         |       |                                                                        |       |
| <b>11</b> Duration of design storm event (hrs)                                                                                                                                                                                                                                                                                                |                         |       |                                                                        |       |
| <b>12</b> Biotreated Volume (ft <sup>3</sup> )<br>$V_{biotreated} = (\text{Item 8}_{\text{forebay}} + \text{Item 8}_{\text{basin}}) + (\text{Item 10} * \text{Item 11} * 3600)$                                                                                                                                                               |                         |       |                                                                        |       |
| <b>13</b> Total biotreated volume from constructed wetlands, extended dry detention, or extended wet detention :<br><i>(Sum of Item 12 for all BMP included in plan)</i>                                                                                                                                                                      |                         |       |                                                                        |       |

### Form 4.3-7 Flow Based Biotreatment (DA 1)

| Biotreatment BMP Type<br><i>Vegetated swale, vegetated filter strip, or other comparable proprietary BMP</i>                                                                              | DA<br>BMP Type | DMA<br>BMP Type | DA<br>BMP Type<br><i>(Use additional forms for more BMPs)</i> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------------------------------------------------------------|
| <b>1</b> Pollutants addressed with BMP<br><i>List all pollutant of concern that will be effectively reduced through specific Unit Operations and Processes described in TGD Table 5-5</i> |                |                 |                                                               |
| <b>2</b> Flow depth for water quality treatment (ft)<br><i>BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>                                        |                |                 |                                                               |
| <b>3</b> Bed slope (ft/ft)<br><i>BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>                                                                  |                |                 |                                                               |
| <b>4</b> Manning's roughness coefficient                                                                                                                                                  |                |                 |                                                               |
| <b>5</b> Bottom width (ft)<br>$b_w = (\text{Form 4.3-5 Item 6} * \text{Item 4}) / (1.49 * \text{Item 2}^{1.67} * \text{Item 3}^{0.5})$                                                    |                |                 |                                                               |
| <b>6</b> Side Slope (ft/ft)<br><i>BMP specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>                                                                 |                |                 |                                                               |
| <b>7</b> Cross sectional area (ft <sup>2</sup> )<br>$A = (\text{Item 5} * \text{Item 2}) + (\text{Item 6} * \text{Item 2}^{2})$                                                           |                |                 |                                                               |
| <b>8</b> Water quality flow velocity (ft/sec)<br>$V = \text{Form 4.3-5 Item 6} / \text{Item 7}$                                                                                           |                |                 |                                                               |
| <b>9</b> Hydraulic residence time (min)<br><i>Pollutant specific, see Table 5-6 of the TGD for WQMP for reference to BMP design details</i>                                               |                |                 |                                                               |
| <b>10</b> Length of flow based BMP (ft)<br>$L = \text{Item 8} * \text{Item 9} * 60$                                                                                                       |                |                 |                                                               |
| <b>11</b> Water surface area at water quality flow depth (ft <sup>2</sup> )<br>$SA_{top} = (\text{Item 5} + (2 * \text{Item 2} * \text{Item 6})) * \text{Item 10}$                        |                |                 |                                                               |

### 4.3.5 Conformance Summary

Complete Form 4.3-8 to demonstrate how on-site LID DCV is met with proposed site design, infiltration, and/or biotreatment BMP. The bottom line of the form is used to describe the basis for infeasibility determination for on-site LID BMP to achieve full LID DCV, and provides methods for computing remaining volume to be addressed in an alternative compliance plan. If the project has more than one outlet, then complete additional versions of this form for each outlet.

| <b>Form 4.3-8 Conformance Summary and Alternative Compliance Volume Estimate (DA 1)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1</b>                                                                                | Total LID DCV for the Project DA-1 (ft <sup>3</sup> ): 40,555 <i>Copy Item 7 in Form 4.2-1</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>2</b>                                                                                | On-site retention with site design BMP (ft <sup>3</sup> ): <i>Copy Item 18 in Form 4.3-2</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>3</b>                                                                                | On-site retention with LID infiltration BMP (ft <sup>3</sup> ): 40,555 <i>Copy Item 16 in Form 4.3-3</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>4</b>                                                                                | On-site biotreatment with volume based biotreatment BMP (ft <sup>3</sup> ): <i>Copy Item 3 in Form 4.3-4</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>5</b>                                                                                | Flow capacity provided by flow based biotreatment BMP (cfs): <i>Copy Item 6 in Form 4.3-4</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>6</b>                                                                                | <p>LID BMP performance criteria are achieved if answer to any of the following is "Yes":</p> <ul style="list-style-type: none"> <li>• Full retention of LID DCV with site design or infiltration BMP: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/><br/><i>If yes, sum of Items 2, 3, and 4 is greater than Item 1</i></li> <li>• Combination of on-site retention BMPs for a portion of the LID DCV and volume-based biotreatment BMP that address all pollutants of concern for the remaining LID DCV: Yes <input type="checkbox"/> No <input type="checkbox"/><br/><i>If yes, a) sum of Items 2, 3, 4, and 5 is greater than Item 1, and Items 2, 3 and 4 are maximized; or b) Item 6 is greater than Form 4.3-5 Item 6 and Items 2, 3 and 4 are maximized</i></li> <li>▪ On-site retention and infiltration is determined to be infeasible; therefore biotreatment BMP provides biotreatment for all pollutants of concern for full LID DCV: Yes <input type="checkbox"/> No <input type="checkbox"/><br/><i>If yes, Form 4.3-1 Items 7 and 8 were both checked yes</i></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>7</b>                                                                                | <p>If the LID DCV is not achieved by any of these means, then the project may be allowed to develop an alternative compliance plan. Check box that describes the scenario which caused the need for alternative compliance:</p> <ul style="list-style-type: none"> <li>• Combination of Site Design, retention and infiltration, , and biotreatment BMPs provide less than full LID DCV capture: <input type="checkbox"/><br/><i>Checked yes if Form 4.3-4 Item 7 is checked yes, Form 4.3-4 Item 6 is zero, and sum of Items 2, 3, 4, and 5 is less than Item 1. If so, apply water quality credits and calculate volume for alternative compliance, V<sub>alt</sub> = (Item 1 – Item 2 – Item 3 – Item 4 – Item 5) * (100 - Form 2.4-1 Item 2)%</i></li> <li>• Facilities, or a combination of facilities, of a different design than in Section E.12.e.(ii)(f) may be permitted if all of the following Phase II Small MS4 General Permit 2013-0001-DWQ 55 February 5, 2013 measures of equivalent effectiveness are demonstrated: <ul style="list-style-type: none"> <li>1) Equal or greater amount of runoff infiltrated or evapotranspired; <input type="checkbox"/></li> <li>2) Equal or lower pollutant concentrations in runoff that is discharged after biotreatment; <input type="checkbox"/></li> <li>3) Equal or greater protection against shock loadings and spills; <input type="checkbox"/></li> <li>4) Equal or greater accessibility and ease of inspection and maintenance. <input type="checkbox"/></li> </ul> </li> </ul> |

#### 4.3.6 Hydromodification Control BMP

Use Form 4.3-9 to compute the remaining runoff volume retention, after Site Design BMPs are implemented, needed to address hydromodification, and the increase in time of concentration and decrease in peak runoff necessary to meet targets for protection of waterbodies with a potential hydromodification. Describe the proposed hydromodification treatment control BMP. Section 5.6 of the TGD for WQMP provides additional details on selection and evaluation of hydromodification control BMP.

| <b>Form 4.3-9 Hydromodification Control BMPs (DA 1)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>1</b> Volume reduction needed for hydromodification performance criteria (ft<sup>3</sup>):<br/> <math display="block">(Form 4.2-2 Item 4 * 0.95) - Form 4.2-2 Item 1</math></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <p><b>2</b> On-site retention with site design and infiltration, BMP (ft<sup>3</sup>): <i>Sum of Form 4.3-8 Items 2, 3, and 4. Evaluate option to increase implementation of on-site retention in Forms 4.3-2, 4.3-3, and 4.3-4 in excess of LID DCV toward achieving hydromodification volume reduction</i></p> |
| <p><b>3</b> Remaining volume for hydromodification volume capture (ft<sup>3</sup>): <i>Item 1 – Item 2</i></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <p><b>4</b> Volume capture provided by incorporating additional on-site BMPs (ft<sup>3</sup>):</p>                                                                                                                                                                                                               |
| <p><b>5</b> Is Form 4.2-2 Item 11 less than or equal to 5%: Yes <input type="checkbox"/> No <input type="checkbox"/><br/> <i>If yes, hydromodification performance criteria is achieved. If no, select one or more mitigation options below:</i></p> <ul style="list-style-type: none"> <li>• Demonstrate increase in time of concentration achieved by proposed LID site design, LID BMP, and additional on-site BMP <input type="checkbox"/></li> <li>• Increase time of concentration by preserving pre-developed flow path and/or increase travel time by reducing slope and increasing cross-sectional area and roughness for proposed on-site conveyance facilities <input type="checkbox"/></li> </ul> |                                                                                                                                                                                                                                                                                                                  |
| <p><b>6</b> Form 4.2-2 Item 12 less than or equal to 5%: Yes <input type="checkbox"/> No <input type="checkbox"/><br/> <i>If yes, hydromodification performance criteria is achieved. If no, select one or more mitigation options below:</i></p> <ul style="list-style-type: none"> <li>• Demonstrate reduction in peak runoff achieved by proposed LID site design, LID BMPs, and additional on-site retention BMPs <input type="checkbox"/></li> </ul>                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                  |

## 4.4 Alternative Compliance Plan (if applicable)

Describe an alternative compliance plan (if applicable) for projects not fully able to infiltrate, or biotreat the DCV via on-site LID practices. A project proponent must develop an alternative compliance plan to address the remainder of the LID DCV. Depending on project type some projects may qualify for water quality credits that can be applied to reduce the DCV that must be treated prior to development of an alternative compliance plan (see Form 2.4-1, Water Quality Credits). Form 4.3-9 Item 8 includes instructions on how to apply water quality credits when computing the DCV that must be met through alternative compliance.

Alternative Designs — Facilities, or a combination of facilities, of a different design than in Permit Section E.12.e.(ii)(f) may be permitted if all of the following measures of equivalent effectiveness are demonstrated:

- 1) Equal or greater amount of runoff infiltrated or evapotranspired;
- 2) Equal or lower pollutant concentrations in runoff that is discharged after biotreatment;
- 3) Equal or greater protection against shock loadings and spills;
- 4) Equal or greater accessibility and ease of inspection and maintenance.

The Project Proponent will need to obtain written approval for an alternative design from the Lahontan Regional Water Board Executive Officer (see Section 6 of the TGD for WQMP).

## Section 5 Inspection and Maintenance Responsibility for Post Construction BMP

All BMPs included as part of the project WQMP are required to be maintained through regular scheduled inspection and maintenance (refer to Section 8, Post Construction BMP Requirements, in the TGD for WQMP). Fully complete Form 5-1 summarizing all BMP included in the WQMP. Attach additional forms as needed. The WQMP shall also include a detailed Operation and Maintenance Plan for all BMP and a Maintenance Agreement. The Maintenance Agreement must also be attached to the WQMP.

Note that at time of Project construction completion, the Maintenance Covenant must be completed, signed, notarized and submitted to the Town's Engineering Department

### Form 5-1 BMP Inspection and Maintenance (use additional forms as necessary)

| BMP                                                                  | Responsible Party(s) | Inspection/ Maintenance Activities Required                                                                   | Minimum Frequency of Activities                 |
|----------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Education of Property Owners, Tenants & Occupants on Stormwater BMPs | Property Owner       | The Property Owner will provide BMP educational information materials to all employees and occupants of site. | Within 3 months of hire and annually thereafter |
| Activity Restrictions                                                | Property Owner       | Inspect to ensure only site usage is limited for its intended use.                                            | As needed                                       |
| Landscape Management BMPs                                            | Property Owner       | Owner will ensure landscaping and irrigation is properly maintained.                                          | Bi-weekly                                       |
| BMP Maintenance                                                      | Property Owner       | Inspect, clean, repair and maintain BMP.                                                                      | Annually                                        |
| Local Water Ordinances                                               | Property Owner       | Local water quality ordinances shall be followed per local agency.                                            | As needed                                       |
| Litter/Debris Control Program                                        | Property Owner       | Inspect and clean site for trash and debris.                                                                  | Weekly                                          |

**MOJAVE RIVER WATERSHED Water Quality Management Plan (WQMP)**

|                                                                                                      |                |                                                                                                                                   |                                                 |
|------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Employee Training                                                                                    | Property Owner | Educational materials on general housekeeping practices for the protection of storm water quality shall be provided to employees. | Within 3 months of hire and annually thereafter |
| Catch Basin Inspection Program                                                                       | Property Owner | Inspect for trash, debris and damage                                                                                              | Bi-annually                                     |
| Vacuum Sweeping                                                                                      | Property Owner | Parking lots shall be swept and vacuumed                                                                                          | Monthly                                         |
| NPDES Permits                                                                                        | Property Owner | Approval and implementation of this WQMP and SWPPP.                                                                               | On going                                        |
| Provide storm drain system stenciling and signage                                                    | Property Owner | Inspect storm drain system<br>stenciling and signage for clarity and legibility.<br>Relabel as needed.                            | Annually, repair as needed                      |
| Use Efficient Irrigation System and Landscape Design                                                 | Property Owner | Install irrigation systems with timing devices to avoid overwatering. Inspect and repair as needed                                | Bi-weekly                                       |
| Finish grade of landscaped areas at a minimum of 1-2 inches below top of curb, sidewalk, or pavement | Property Owner | Landscape areas will be a minimum of 1 inch below adjacent impervious areas.                                                      | Once                                            |

# Section 6 WQMP Attachments

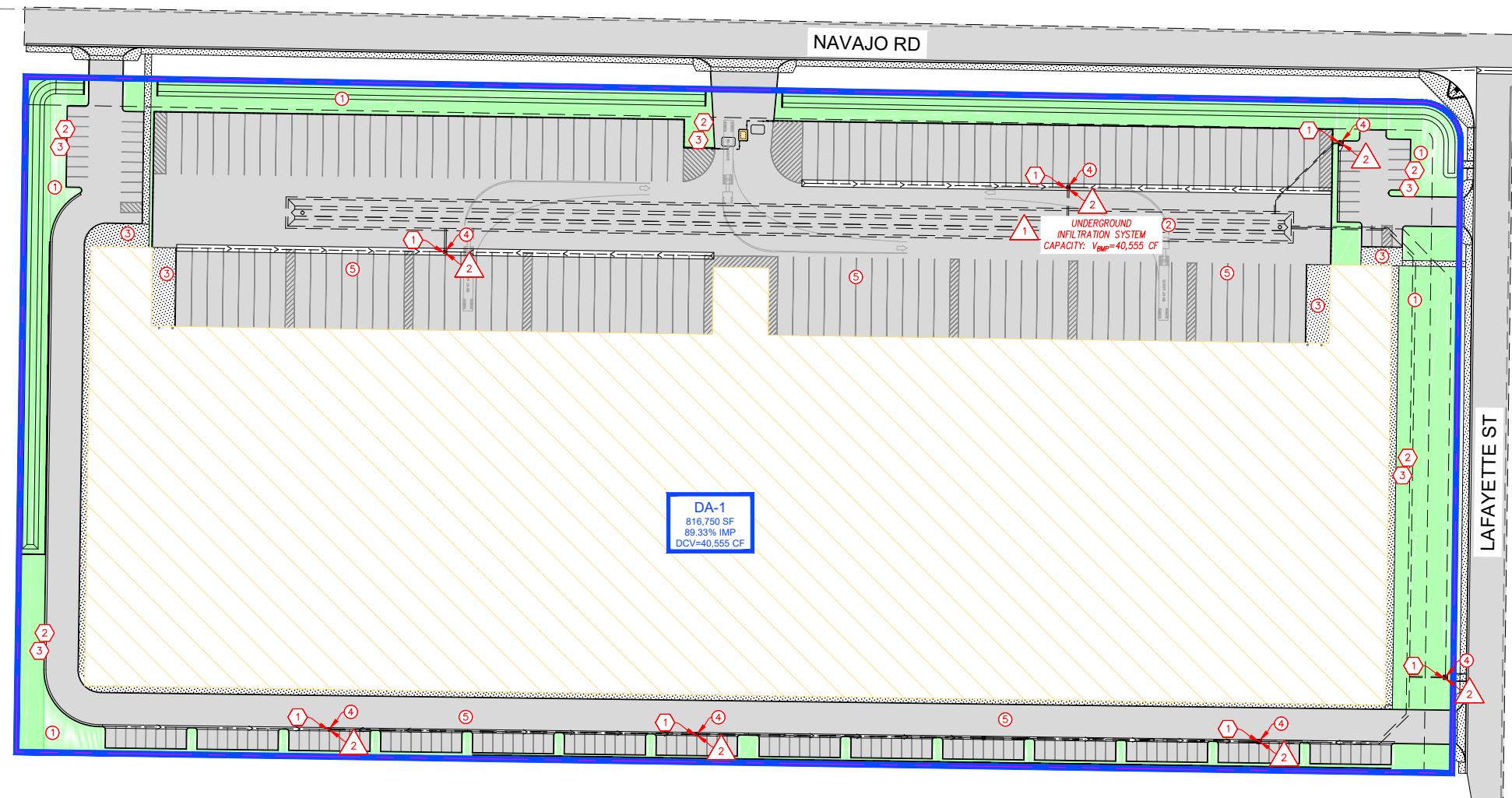
## 6.1. Site Plan and Drainage Plan

Include a site plan and drainage plan sheet set containing the following minimum information:

- Project location
- Site boundary
- Land uses and land covers, as applicable
- Suitability/feasibility constraints
- Structural Source Control BMP locations
- Site Design Hydrologic Source Control BMP locations
- LID BMP details
- Drainage delineations and flow information
- Drainage connections

## 6.2 Electronic Data Submittal

Minimum requirements include submittal of PDF exhibits in addition to hard copies. Format must not require specialized software to open. If the local jurisdiction requires specialized electronic document formats (as described in their local Local Implementation Plan), this section will describe the contents (e.g., layering, nomenclature, geo-referencing, etc.) of these documents so that they may be interpreted efficiently and accurately.


## 6.3 Post Construction

Attach all O&M Plans and Maintenance Covenant for BMP to the WQMP. See following page for Maintenance Covenant Template

## 6.4 Other Supporting Documentation

- BMP Educational Materials
- Activity Restriction-C, C&R's & Lease Agreements

## **Appendix 6.1 – Site Plan and Drainage Plan**



LEGEND:

- W.Q.M.P. DRAINAGE AREA
- PROPERTY LIMITS

PROPOSED LANDSCAPING AREAS  
PROPOSED CONCRETE PAVING AREAS  
PROPOSED A/C PAVING AREAS  
PROPOSED STRUCTURES

OWNER INFORMATION:  
GREEN TRUCKING SOLUTIONS LLC  
14816 VALLEY BLVD  
FONATNA, CA 92335  
ilnaz@hubgts.com  
888-328-3898

NON-STRUCTURAL SOURCE CONTROL BMPS (FORM 4.1-1):  
 ① EDUCATION OF PROPERTY OWNERS, TENANTS AND OCCUPANTS ON STORMWATER BMPS [N1]  
 ② ACTIVITY RESTRICTIONS [N2]  
 ③ LANDSCAPE MANAGEMENT BMPS [N3]  
 ④ BMP MAINTENANCE [N4]  
 ⑤ LOCAL WATER QUALITY ORDINANCES [N6]  
 ⑥ LITTER/DEBRIS CONTROL PROGRAM [N11]  
 ⑦ EMPLOYEE TRAINING [N12]  
 ⑧ CATCH BASIN INSPECTION PROGRAM [N14] (CASQA SC-44)  
 ⑨ VACUUM SWEEPING OF PRIVATE STREETS AND PARKING LOTS [N15] (CASQA SC-43)  
 ⑩ COMPLY WITH ALL OTHER APPLICABLE NPDES PERMITS [N17]

STRUCTURAL SOURCE CONTROL BMPS (FORM 4.1-2):  
 ① PROVIDE STORM DRAIN SYSTEM STENCILLING AND SIGNAGE [S1] (CASQA SD-13)  
 ② USE EFFICIENT IRRIGATION SYSTEMS & LANDSCAPE DESIGN, WATER CONSERVATION, SMART CONTROLLERS, AND SOURCE CONTROL [S4] (CASQA SD-12)  
 ③ FINISH GRADE OF LANDSCAPED AREAS AT A MINIMUM OF 1-2 INCHES BELOW TOP OF CURB, SIDEWALK, OR PAVEMENT

PROPOSED TREATMENT CONTROL BMP'S:  
 ① UNDERGROUND INFILTRATION SYSTEM  
 ② DRAIN INSERT (MP-52)

W.Q.M.P. NOTES:

- 1.) STRUCTURAL BMPS MAY BE SUBSTITUTED FOR EQUIVALENT PRODUCTS WITH WRITTEN APPROVAL FROM THE ENGINEER OF RECORD AND CITY, BASED ON AVAILABILITY AT TIME OF CONSTRUCTION.
- 2.) TREATMENT CONTROL BMPS MAY BE SUBSTITUTED FOR EQUIVALENT PRODUCTS WITH WRITTEN APPROVAL FROM THE ENGINEER OF RECORD AND CITY.



60 0 60 120 180  
SCALE: 1"=60'

WATER QUALITY MANAGEMENT PLAN  
FISHER CONSTRUCTION GTS COLD STORAGE  
CITY OF APPLE VALLEY  
A.P.N. 0463-231-06

PREPARED FOR: OFT CORP

DRAWN BY: CR SCALE: 1"= 60'

CHECKED BY: JTS SHEET: 1 OF 1

DISREGARD PRINTS BEARING  
EARLIER REVISION DATES

07-05-2022



## LEGEND:

W.Q.M.P DRAINAGE AREA

PROPERTY LIMITS

PROPOSED LANDSCAPING AREAS

PROPOSED CONCRETE PAVING AREAS

PROPOSED A/C PAVING AREAS

PROPOSED STRUCTURES

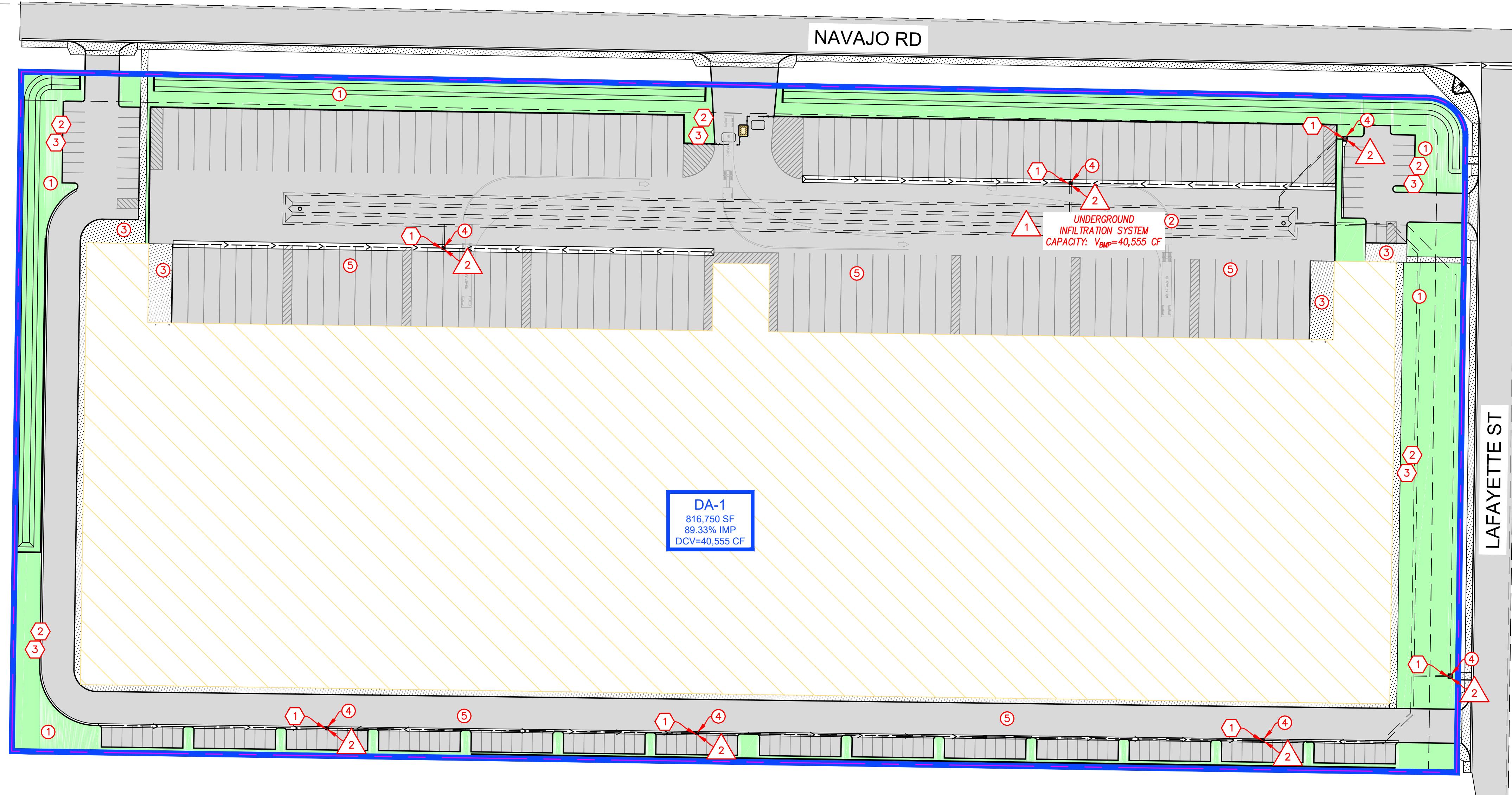
## OWNER INFORMATION:

GREEN TRUCKING SOLUTIONS LLC  
14816 VALLEY BLVD  
FONTANA, CA 92335  
ilnaz@hubgts.com  
888-328-3898

## NON-STRUCTURAL SOURCE CONTROL BMPS (FORM 4.1-1):

- ① EDUCATION OF PROPERTY OWNERS, TENANTS AND OCCUPANTS ON STORMWATER BMPS [N1]
- ② ACTIVITY RESTRICTIONS [N2]
- ① LANDSCAPE MANAGEMENT BMPS [N3]
- ② BMP MAINTENANCE [N4]
- ③ LOCAL WATER QUALITY ORDINANCES [N6]
- ③ LITTER/DEBRIS CONTROL PROGRAM [N11]
- ④ EMPLOYEE TRAINING [N12]
- ④ CATCH BASIN INSPECTION PROGRAM [N14] (CASQA SC-44)
- ⑤ VACUUM SWEEPING OF PRIVATE STREETS AND PARKING LOTS [N15] (CASQA SC-43)
- ⑥ COMPLY WITH ALL OTHER APPLICABLE NPDES PERMITS [N17]

## STRUCTURAL SOURCE CONTROL BMPS (FORM 4.1-2):


- ① PROVIDE STORM DRAIN SYSTEM STENCILLING AND SIGNAGE [S1] (CASQA SD-13)
- ② USE EFFICIENT IRRIGATION SYSTEMS & LANDSCAPE DESIGN, WATER CONSERVATION, SMART CONTROLLERS, AND SOURCE CONTROL [S4] (CASQA SD-12)
- ③ FINISH GRADE OF LANDSCAPED AREAS AT A MINIMUM OF 1-2 INCHES BELOW TOP OF CURB, SIDEWALK, OR PAVEMENT

## PROPOSED TREATMENT CONTROL BMP'S:

- ① UNDERGROUND INFILTRATION SYSTEM
- ② DRAIN INSERT (MP-52)

## W.Q.M.P. NOTES:

- 1.) STRUCTURAL BMPS MAY BE SUBSTITUTED FOR EQUIVALENT PRODUCTS WITH WRITTEN APPROVAL FROM THE ENGINEER OF RECORD AND CITY, BASED ON AVAILABILITY AT TIME OF CONSTRUCTION.
- 2.) TREATMENT CONTROL BMP'S MAY BE SUBSTITUTED FOR EQUIVALENT PRODUCTS WITH WRITTEN APPROVAL FROM THE ENGINEER OF RECORD AND CITY.



60 0 60 120 180  
SCALE: 1"=60'

**WATER QUALITY MANAGEMENT PLAN**  
FISHER CONSTRUCTION GTS COLD STORAGE  
CITY OF APPLE VALLEY  
A.P.N. 0463-231-06

|                                                    |            |         |          |
|----------------------------------------------------|------------|---------|----------|
| PREPARED FOR: OFT CORP                             |            |         |          |
| DRAWN BY:                                          | CR         | SCALE:  | 1" = 60' |
| CHECKED BY:                                        | JTS        | JOB NO: | 224986   |
| DISREGARD PRINTS BEARING<br>EARLIER REVISION DATES | 07-05-2022 |         |          |



TEL. (909) 885-3806  
251 NORTH SPRUCE AVE.  
SUITE 200, IRVINE, CA 92614  
FAX (909) 885-1720  
WWW.BONADIMAN.COM

## **Appendix 6.2 – Electronic Data Submittal**

Note: A cd containing PDF versions of the WQMP documents will be included in this section during final engineering, when requested by the reviewing agency.

## **Appendix 6.3 – Post Construction**

Note: As indicated in section 8.2.3 of the “Technical Guidance Document for Water Quality Management Plans”, dated June 7, 2013, a maintenance agreement may be required by local jurisdiction for proposed BMPs. A maintenance agreement will be provided in this section if requested by the local jurisdiction.

## **Appendix 6.4 – Other Supporting Documentation**



## POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

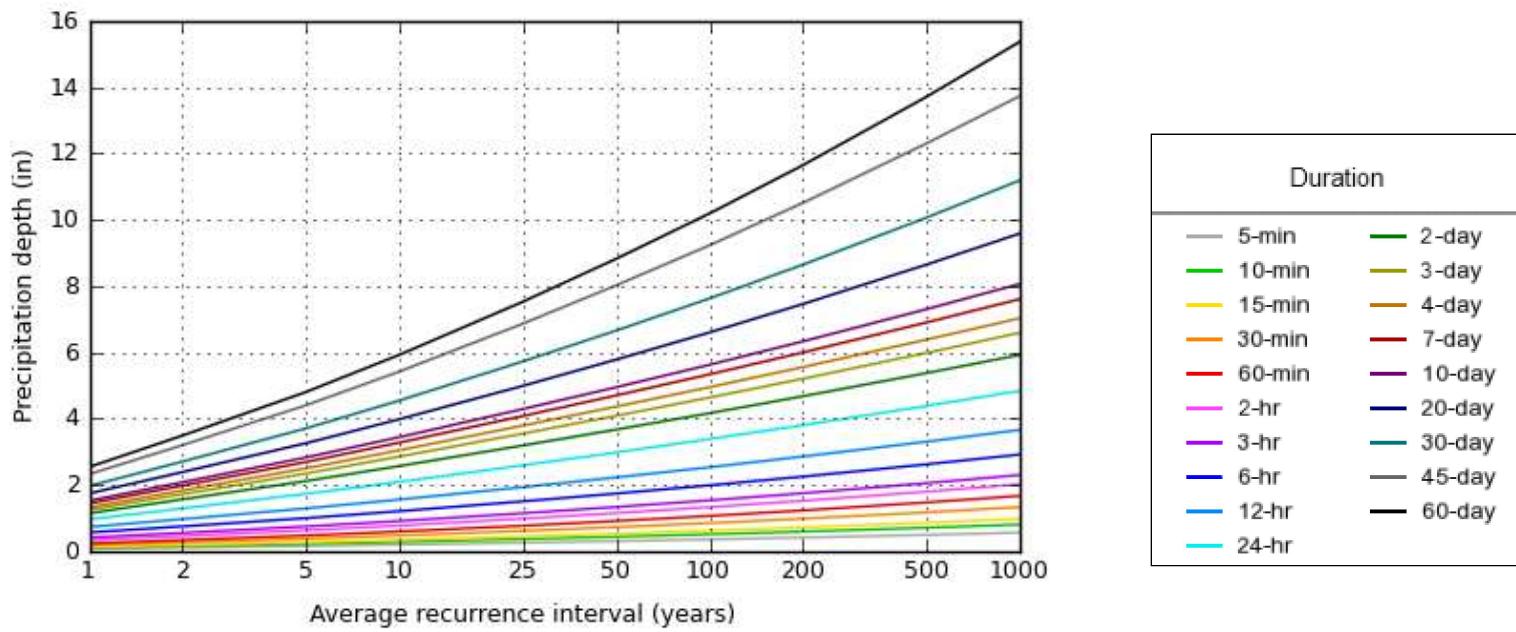
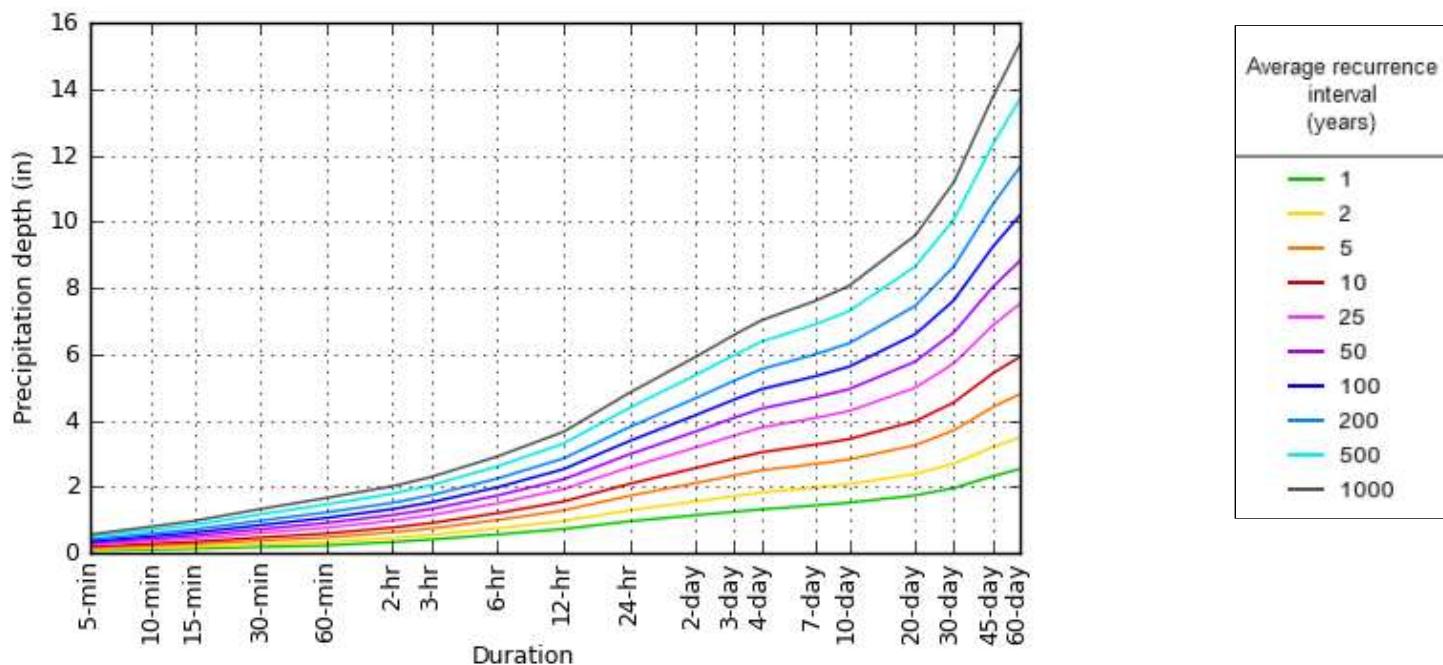
NOAA, National Weather Service, Silver Spring, Maryland

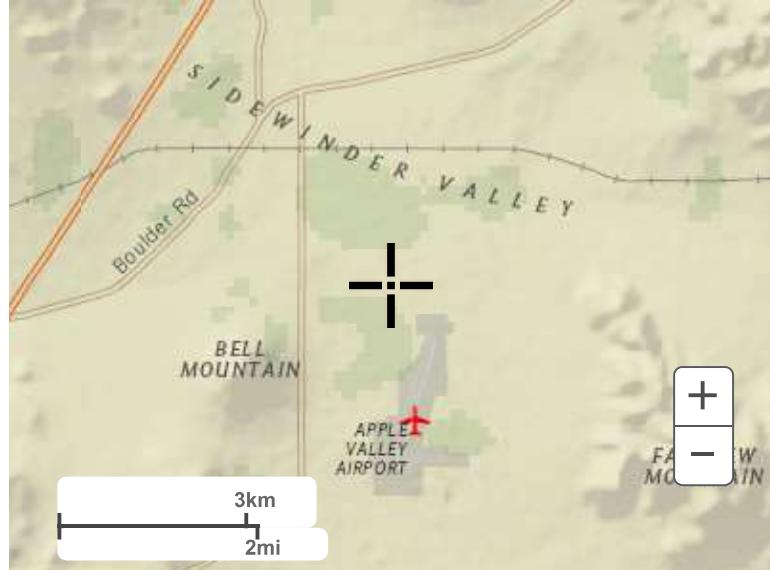
[PF tabular](#) | [PF graphical](#) | [Maps & aerials](#)

### PF tabular

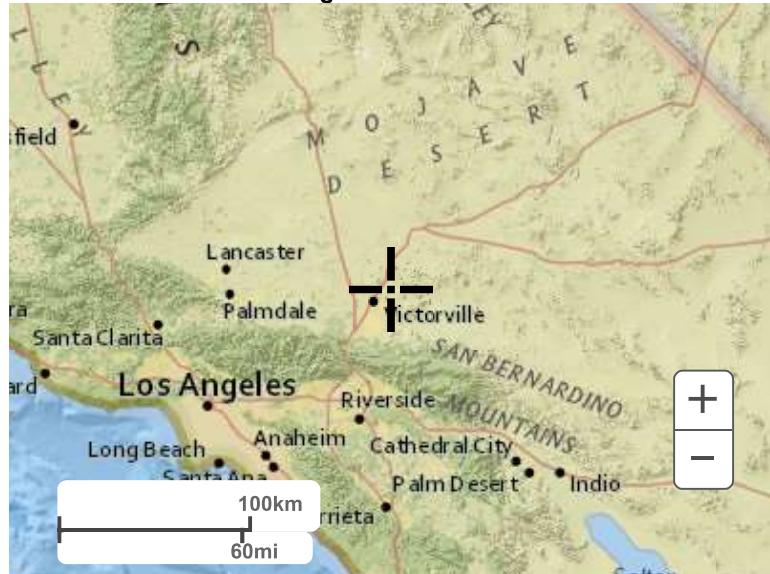
| <b>PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches)<sup>1</sup></b> |                                            |                               |                               |                               |                               |                               |                               |                               |                               |                               |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| <b>Duration</b>                                                                                                | <b>Average recurrence interval (years)</b> |                               |                               |                               |                               |                               |                               |                               |                               |                               |
|                                                                                                                | <b>1</b>                                   | <b>2</b>                      | <b>5</b>                      | <b>10</b>                     | <b>25</b>                     | <b>50</b>                     | <b>100</b>                    | <b>200</b>                    | <b>500</b>                    | <b>1000</b>                   |
| <b>5-min</b>                                                                                                   | <b>0.082</b><br>(0.067-0.100)              | <b>0.115</b><br>(0.095-0.141) | <b>0.162</b><br>(0.133-0.199) | <b>0.203</b><br>(0.165-0.251) | <b>0.261</b><br>(0.206-0.335) | <b>0.309</b><br>(0.239-0.405) | <b>0.361</b><br>(0.272-0.484) | <b>0.417</b><br>(0.306-0.575) | <b>0.498</b><br>(0.351-0.715) | <b>0.565</b><br>(0.385-0.839) |
| <b>10-min</b>                                                                                                  | <b>0.117</b><br>(0.096-0.143)              | <b>0.165</b><br>(0.136-0.203) | <b>0.232</b><br>(0.191-0.286) | <b>0.290</b><br>(0.236-0.360) | <b>0.374</b><br>(0.295-0.480) | <b>0.443</b><br>(0.342-0.580) | <b>0.517</b><br>(0.390-0.693) | <b>0.598</b><br>(0.438-0.823) | <b>0.714</b><br>(0.503-1.02)  | <b>0.810</b><br>(0.551-1.20)  |
| <b>15-min</b>                                                                                                  | <b>0.141</b><br>(0.116-0.173)              | <b>0.200</b><br>(0.164-0.245) | <b>0.281</b><br>(0.230-0.346) | <b>0.351</b><br>(0.286-0.436) | <b>0.453</b><br>(0.357-0.580) | <b>0.536</b><br>(0.414-0.702) | <b>0.626</b><br>(0.471-0.838) | <b>0.723</b><br>(0.530-0.996) | <b>0.864</b><br>(0.608-1.24)  | <b>0.980</b><br>(0.667-1.45)  |
| <b>30-min</b>                                                                                                  | <b>0.193</b><br>(0.159-0.236)              | <b>0.272</b><br>(0.224-0.334) | <b>0.383</b><br>(0.314-0.471) | <b>0.479</b><br>(0.390-0.594) | <b>0.618</b><br>(0.487-0.792) | <b>0.731</b><br>(0.565-0.957) | <b>0.853</b><br>(0.643-1.14)  | <b>0.986</b><br>(0.723-1.36)  | <b>1.18</b><br>(0.829-1.69)   | <b>1.34</b><br>(0.909-1.98)   |
| <b>60-min</b>                                                                                                  | <b>0.241</b><br>(0.199-0.296)              | <b>0.341</b><br>(0.280-0.418) | <b>0.480</b><br>(0.394-0.590) | <b>0.599</b><br>(0.488-0.744) | <b>0.773</b><br>(0.609-0.991) | <b>0.916</b><br>(0.707-1.20)  | <b>1.07</b><br>(0.805-1.43)   | <b>1.24</b><br>(0.905-1.70)   | <b>1.48</b><br>(1.04-2.12)    | <b>1.67</b><br>(1.14-2.48)    |
| <b>2-hr</b>                                                                                                    | <b>0.343</b><br>(0.283-0.421)              | <b>0.465</b><br>(0.383-0.571) | <b>0.634</b><br>(0.521-0.781) | <b>0.779</b><br>(0.634-0.966) | <b>0.986</b><br>(0.777-1.26)  | <b>1.15</b><br>(0.891-1.51)   | <b>1.33</b><br>(1.00-1.79)    | <b>1.53</b><br>(1.12-2.10)    | <b>1.80</b><br>(1.27-2.58)    | <b>2.02</b><br>(1.38-3.01)    |
| <b>3-hr</b>                                                                                                    | <b>0.417</b><br>(0.344-0.511)              | <b>0.558</b><br>(0.459-0.685) | <b>0.751</b><br>(0.616-0.924) | <b>0.915</b><br>(0.745-1.14)  | <b>1.15</b><br>(0.906-1.47)   | <b>1.34</b><br>(1.03-1.75)    | <b>1.54</b><br>(1.16-2.06)    | <b>1.75</b><br>(1.29-2.42)    | <b>2.06</b><br>(1.45-2.95)    | <b>2.30</b><br>(1.57-3.42)    |
| <b>6-hr</b>                                                                                                    | <b>0.570</b><br>(0.470-0.699)              | <b>0.753</b><br>(0.620-0.924) | <b>1.00</b><br>(0.822-1.23)   | <b>1.21</b><br>(0.987-1.50)   | <b>1.51</b><br>(1.19-1.93)    | <b>1.74</b><br>(1.35-2.28)    | <b>1.99</b><br>(1.50-2.67)    | <b>2.26</b><br>(1.65-3.11)    | <b>2.62</b><br>(1.85-3.77)    | <b>2.92</b><br>(1.99-4.34)    |
| <b>12-hr</b>                                                                                                   | <b>0.735</b><br>(0.606-0.901)              | <b>0.974</b><br>(0.801-1.20)  | <b>1.30</b><br>(1.06-1.59)    | <b>1.56</b><br>(1.27-1.94)    | <b>1.94</b><br>(1.53-2.48)    | <b>2.23</b><br>(1.72-2.92)    | <b>2.54</b><br>(1.91-3.40)    | <b>2.86</b><br>(2.10-3.94)    | <b>3.31</b><br>(2.33-4.75)    | <b>3.66</b><br>(2.49-5.44)    |
| <b>24-hr</b>                                                                                                   | <b>0.968</b><br>(0.858-1.11)               | <b>1.30</b><br>(1.15-1.49)    | <b>1.73</b><br>(1.53-2.00)    | <b>2.10</b><br>(1.84-2.44)    | <b>2.59</b><br>(2.20-3.12)    | <b>2.99</b><br>(2.48-3.67)    | <b>3.39</b><br>(2.74-4.26)    | <b>3.81</b><br>(3.00-4.93)    | <b>4.39</b><br>(3.32-5.92)    | <b>4.84</b><br>(3.54-6.76)    |
| <b>2-day</b>                                                                                                   | <b>1.15</b><br>(1.02-1.32)                 | <b>1.57</b><br>(1.39-1.81)    | <b>2.12</b><br>(1.87-2.45)    | <b>2.57</b><br>(2.26-3.00)    | <b>3.19</b><br>(2.71-3.84)    | <b>3.67</b><br>(3.05-4.51)    | <b>4.17</b><br>(3.38-5.25)    | <b>4.68</b><br>(3.69-6.06)    | <b>5.38</b><br>(4.06-7.26)    | <b>5.92</b><br>(4.33-8.27)    |
| <b>3-day</b>                                                                                                   | <b>1.25</b><br>(1.11-1.44)                 | <b>1.73</b><br>(1.53-1.99)    | <b>2.35</b><br>(2.07-2.71)    | <b>2.86</b><br>(2.50-3.33)    | <b>3.55</b><br>(3.01-4.28)    | <b>4.09</b><br>(3.40-5.03)    | <b>4.64</b><br>(3.76-5.84)    | <b>5.21</b><br>(4.10-6.74)    | <b>5.98</b><br>(4.52-8.08)    | <b>6.59</b><br>(4.81-9.21)    |
| <b>4-day</b>                                                                                                   | <b>1.33</b><br>(1.18-1.53)                 | <b>1.84</b><br>(1.63-2.11)    | <b>2.50</b><br>(2.21-2.89)    | <b>3.05</b><br>(2.67-3.55)    | <b>3.79</b><br>(3.22-4.57)    | <b>4.37</b><br>(3.62-5.37)    | <b>4.95</b><br>(4.01-6.24)    | <b>5.56</b><br>(4.38-7.20)    | <b>6.38</b><br>(4.83-8.62)    | <b>7.03</b><br>(5.13-9.82)    |
| <b>7-day</b>                                                                                                   | <b>1.45</b><br>(1.28-1.66)                 | <b>1.98</b><br>(1.76-2.28)    | <b>2.70</b><br>(2.38-3.11)    | <b>3.28</b><br>(2.87-3.82)    | <b>4.08</b><br>(3.46-4.91)    | <b>4.70</b><br>(3.90-5.78)    | <b>5.34</b><br>(4.32-6.72)    | <b>6.00</b><br>(4.72-7.77)    | <b>6.90</b><br>(5.22-9.31)    | <b>7.61</b><br>(5.56-10.6)    |
| <b>10-day</b>                                                                                                  | <b>1.53</b><br>(1.36-1.76)                 | <b>2.09</b><br>(1.85-2.40)    | <b>2.83</b><br>(2.50-3.27)    | <b>3.44</b><br>(3.02-4.01)    | <b>4.29</b><br>(3.64-5.17)    | <b>4.95</b><br>(4.11-6.08)    | <b>5.63</b><br>(4.56-7.09)    | <b>6.33</b><br>(4.99-8.20)    | <b>7.30</b><br>(5.52-9.86)    | <b>8.06</b><br>(5.89-11.3)    |
| <b>20-day</b>                                                                                                  | <b>1.75</b><br>(1.55-2.01)                 | <b>2.39</b><br>(2.12-2.76)    | <b>3.26</b><br>(2.88-3.77)    | <b>3.98</b><br>(3.49-4.64)    | <b>4.99</b><br>(4.23-6.01)    | <b>5.78</b><br>(4.80-7.11)    | <b>6.60</b><br>(5.35-8.31)    | <b>7.46</b><br>(5.88-9.66)    | <b>8.65</b><br>(6.54-11.7)    | <b>9.58</b><br>(7.00-13.4)    |
| <b>30-day</b>                                                                                                  | <b>1.97</b><br>(1.75-2.27)                 | <b>2.71</b><br>(2.40-3.12)    | <b>3.71</b><br>(3.28-4.28)    | <b>4.55</b><br>(3.99-5.30)    | <b>5.73</b><br>(4.85-6.89)    | <b>6.66</b><br>(5.53-8.18)    | <b>7.63</b><br>(6.18-9.60)    | <b>8.65</b><br>(6.81-11.2)    | <b>10.1</b><br>(7.61-13.6)    | <b>11.2</b><br>(8.17-15.6)    |
| <b>45-day</b>                                                                                                  | <b>2.33</b><br>(2.06-2.68)                 | <b>3.20</b><br>(2.84-3.69)    | <b>4.40</b><br>(3.89-5.09)    | <b>5.42</b><br>(4.75-6.31)    | <b>6.87</b><br>(5.82-8.26)    | <b>8.02</b><br>(6.66-9.86)    | <b>9.23</b><br>(7.48-11.6)    | <b>10.5</b><br>(8.28-13.6)    | <b>12.3</b><br>(9.30-16.6)    | <b>13.7</b><br>(10.0-19.2)    |
| <b>60-day</b>                                                                                                  | <b>2.54</b><br>(2.26-2.93)                 | <b>3.49</b><br>(3.09-4.02)    | <b>4.81</b><br>(4.24-5.55)    | <b>5.93</b><br>(5.19-6.90)    | <b>7.53</b><br>(6.38-9.06)    | <b>8.82</b><br>(7.32-10.8)    | <b>10.2</b><br>(8.25-12.8)    | <b>11.6</b><br>(9.17-15.1)    | <b>13.7</b><br>(10.4-18.5)    | <b>15.4</b><br>(11.2-21.5)    |

<sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).



Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

[Back to Top](#)


**PF graphical**

PDS-based depth-duration-frequency (DDF) curves  
 Latitude: 34.5952°, Longitude: -117.1903°





Large scale terrain



Large scale map



Large scale aerial



[Back to Top](#)

[US Department of Commerce](#)  
[National Oceanic and Atmospheric Administration](#)  
[National Weather Service](#)  
[National Water Center](#)  
1325 East West Highway  
Silver Spring, MD 20910  
Questions?: [HDSC.Questions@noaa.gov](mailto:HDSC.Questions@noaa.gov)

[Disclaimer](#)

June 9, 2022  
Project No.: 22160-01

GTS Leasing  
14816 Valley Blvd  
Fontana, Ca. 92335



**GeoMat Testing Laboratories, Inc**  
Geotechnical Engineering/ Material Testing  
[www.geomatlabs.com](http://www.geomatlabs.com)  
[info@geomatlabs.com](mailto:info@geomatlabs.com)

SUBJECT: Preliminary Soil Investigation Report  
Proposed Cold Storage Facility  
APN 0463-231-06  
NWC of Navajo Road and Lafayette Street  
Apple Valley, California

In accordance with your authorization, GeoMat Testing Laboratories, Inc. (GeoMat) is pleased to present our Preliminary Soil Investigation Report for the proposed cold storage facility at APN 0463-231-06, Apple Valley, California. The accompanying report presents a summary of our findings, recommendations and limitation of work for the proposed site development.

The primary purpose of this investigation and report is to provide an evaluation of the existing geotechnical conditions at the site as they relate to the design and construction of the proposed development. More specifically, this investigation was to address geotechnical conditions for the preliminary design of the foundations for the proposed building.

Based on the results of our investigation, the proposed development is feasible from a geotechnical standpoint and it is our professional opinion that the proposed development will not be subject to a hazard from settlement, slippage, or landslide, provided the recommendations of this report are incorporated into the proposed development. It is also our opinion that the proposed development will not adversely affect the geologic stability of the site or adjacent properties provided the recommendations contained in this report are incorporated into the proposed construction.

We appreciate the opportunity to assist you and look forward to future projects. If you should have any questions regarding this report, please do not hesitate to call our office. We appreciate this opportunity to be of service.

Submitted for GeoMat Testing Laboratories, Inc.

*Haytham Nabil*  
Haytham Nabil, GE 2375  
Project Engineer  
[haytham@geomatlabs.com](mailto:haytham@geomatlabs.com)



*Art Martinez*  
Art Martinez  
Staff Engineer  
[art@geomatlabs.com](mailto:art@geomatlabs.com)

Distribution: (3) Addressee

## TABLE OF CONTENTS

|                                              |           |
|----------------------------------------------|-----------|
| <b>1.0 INTRODUCTION.....</b>                 | <b>1</b>  |
| 1.1 EXISTING SITE CONDITIONS .....           | 1         |
| 1.2 PROPOSED DEVELOPMENT .....               | 1         |
| 1.3 FIELD WORK.....                          | 1         |
| 1.4 LABORATORY TESTING.....                  | 1         |
| <b>2.0 GEOTECHNICAL CONDITIONS .....</b>     | <b>2</b>  |
| 2.1 REGIONAL GEOLOGIC FINDINGS .....         | 2         |
| 2.2 SUBSURFACE CONDITIONS .....              | 2         |
| 2.3 GROUNDWATER .....                        | 4         |
| 2.4 SEISMIC DESIGN PARAMETERS .....          | 4         |
| <b>3.0 TENTATIVE RECOMMENDATIONS.....</b>    | <b>5</b>  |
| 3.1 EARTHWORK RECOMMENDATIONS .....          | 5         |
| 3.2 TEMPORARY EXCAVATIONS .....              | 6         |
| 3.3 FOUNDATION RECOMMENDATIONS .....         | 6         |
| 3.4 SLABS-ON-GRADE.....                      | 7         |
| 3.5 RETAINING WALLS .....                    | 8         |
| 3.6 PAVEMENT RECOMMENDATIONS .....           | 9         |
| 3.7 STORMWATER INFILTRATION.....             | 10        |
| 3.8 SITE DRAINAGE .....                      | 11        |
| <b>4.0 ADDITIONAL SERVICES.....</b>          | <b>12</b> |
| <b>5.0 GEOTECHNICAL RISK.....</b>            | <b>13</b> |
| <b>6.0 LIMITATION OF INVESTIGATION .....</b> | <b>13</b> |

### ATTACHMENTS:

|          |                                 |
|----------|---------------------------------|
| Figure 1 | Site Location Map               |
| Figure 2 | Regional Geologic Map           |
| Figure 3 | Regional Fault Map              |
| Plate 1  | Exploratory Boring Location Map |
| Plate 2  | Retaining Wall Surcharge Detail |
| Plate 3  | Retaining Wall Drainage Detail  |

### APPENDIX:

|            |                                              |
|------------|----------------------------------------------|
| Appendix A | Selected References                          |
| Appendix B | Geotechnical Boring Logs                     |
| Appendix C | Laboratory Test Results                      |
| Appendix D | 2019 CBC Seismic Design Parameters           |
| Appendix E | General Earthwork and Grading Specifications |
| Appendix F | Infiltration Test Data                       |

## 1.0 INTRODUCTION

### 1.1 EXISTING SITE CONDITIONS

The subject site is located on the northwest corner of Navajo Road and Lafayette Street, in the Apple Valley, in the Apple Valley area of San Bernardino County, California. Access on site is from either Navajo Road or Lafayette Street which are paved roads but without concrete curb and gutter improvements. The geographical relationship of the site and surrounding vicinity is shown on the site Locations Map, Figure 1.

The site is rectangular in shape measuring approximately 1300 feet long and 620 feet wide with a recorded lot size of approximately 18.7 acres. The site is vacant covered mostly in light desert vegetation. Topographically, the site slopes to the southwest at a rate of approximately 1 percent.

### 1.2 PROPOSED DEVELOPMENT

Based on the provided Conceptual Site Plan prepared by Fisher Construction Group (Sheet A-100, May 16, 2022), the site is proposed for a 400,000 sq. ft. cold storage building and 16,000 sq. ft. of attached office space. The northern section of the site is proposed for a gravel storage lot for trailers. The remaining site is proposed for paved parking, drive aisles, concrete hardscape, and landscaping. We have not been provided with foundation plans but we assume that the structure will be supported on shallow, concrete foundations, and slab-on-grade. Continuous wall loads are not expected to exceed 3 kips per linear foot and isolated column loads of up to 50 kips.

Once the design phase and foundation loading configuration proceeds to a more finalized plan, the recommendations within this report should be reviewed and revised, if necessary. Any changes in the design, location or elevation of any structure, as outlined in this report, should be reviewed by this office. GeoMat should be contacted to determine the necessity for review and possible revision of this report.

### 1.3 FIELD WORK

Eleven exploratory borings were excavated on May 24 and 29, 2022 to maximum depth of 50 feet below existing ground surface utilizing a CME-45 mobile drill rig equipped with 6-inch diameter hollow stem augers. Refer to Plate 1 for borehole locations. Relatively undisturbed samples were obtained utilizing the California Ring Sampler (ASTM D 1587). Additional representative samples have been recovered with the SPT (Standard Penetration Test, ASTM D 1586) sampler. Bulk samples were also collected from the auger cuttings during drilling. The samples were collected in plastic bags, tied, and tagged for the location and depth. The geotechnical boring logs are presented in Appendix B and may include a description and classification of each stratum, sample locations, blow counts, groundwater conditions encountered during drilling, results from selected types of laboratory tests, and drilling information.

### 1.4 LABORATORY TESTING

Laboratory tests were performed on selected soil samples. The tests consisted primarily of the following:

|                         |                                   |
|-------------------------|-----------------------------------|
| Moisture Content        | (ASTM D2216)                      |
| Dry Density             | (ASTM D2937)                      |
| Sieve Analysis          | (ASTM C136)                       |
| Direct Shear            | (ASTM D3080)                      |
| Hydrocollapse           | (ASTM D4546, Method B)            |
| Soluble Sulfate Content | (Extinction/Turbidimetric Method) |

The soil classifications are in conformance with the Unified Soil Classifications System (USCS), as outlined in the Classification and Symbols Chart (Appendix B). A summary of our laboratory testing, ASTM designation, and graphical presentation of test results is presented in Appendix C.

## 2.0 GEOTECHNICAL CONDITIONS

### 2.1 REGIONAL GEOLOGIC FINDINGS

Based on the Geologic Map of the Apple Valley quadrangle (USGS, Mineral Investigation Field Studies Map MF-232) the site is located in an area mapped as younger alluvium (Qa), see Figure 2. Alluvium is weathered bedrock material and sediments that have been eroded from natural slopes and deposited in generally flat lying areas.

There are no mapped active or potentially active faults with surface expression that trend through or adjacent to the subject property, according to those references cited herein. The site does not lie within a designated Alquist-Priolo Earthquake Fault Zone (CDMG, 2000). According to the California Department of Conservation, Fault Activity Map of California 2010, the site is located approximately 3.4 miles southwest of the Helendale-South Lockart fault zone, see Figure 3.

The subject site, as is the case with most of the tectonically-active California area, will be periodically subject to moderate to intense earthquake-induced ground shaking from nearby faults. Significant damage can occur to the site and structural improvements during a strong seismic event. Neither the location nor magnitude of earthquakes can accurately be predicted at this time.

#### 2.1.1 Liquefaction Potential

Liquefaction is a soil strength and stiffness loss phenomenon that typically occurs in loose, saturated cohesionless soils as a result of strong ground shaking during earthquakes. The potential for liquefaction at a site is usually determined based on the results of a subsurface geotechnical investigation and the groundwater conditions beneath the site. Hazards to buildings associated with liquefaction include bearing capacity failure, lateral spreading, and differential settlement of soils below foundations, which can contribute to structural damage or collapse.

According to the Apple Valley General Plan, the site is not located in an area considered to have a potential for liquefaction. Therefore, the potential for liquefaction associated ground deformation (seismic settlement and differential compaction) beneath the site is considered very low.

#### 2.1.2 Slope Stability & Seismic Induced Landslides

The site and the surrounding properties are flat and not prone to slope instability hazards, such as landslides. The project will not be impacted by a landslide or impact adjacent properties due to a project generated landslide.

### 2.2 SUBSURFACE CONDITIONS

Detailed logs of the exploratory excavations are presented in Appendix B of this report. The earth materials encountered within the exploratory excavations are generally described below.

Based on our exploratory boreholes, the site soil generally consists of very dense, orange-brown, dry to slightly moist, silty fine to coarse grained sand and sand with silt (USCS "SM" and "SW-SM") to the total depth explored of 20 feet below existing ground surface. The alluvial soil onsite contains moderate amount of caliche content and is moderately cemented.

#### 2.2.1 Cal/OSHA Soil Type & Caving Potential

The subsurface soil expected to be encountered during site development may be classified as "Soil Type B" per the California Occupational Safety and Health Administration (Cal/OSHA). Caving of the exploratory borings did not occur. Due to the presence of apparent cohesion encountered within the boreholes, caving is not expected to be a major concern during site development.

## 2.2.2 Expansive Soil

Expansive soils are characterized by their ability to undergo significant volume changes (shrink or swell) due to variations in moisture content. Changes in soil moisture content can result from precipitation, landscape irrigation, utility leakage, roof drainage, perched groundwater, drought, or other factors and may result in unacceptable settlement or heave of structures or concrete slabs supported on grade.

Based on laboratory classification, the upper foundation soil onsite is expected to have a very low expansion potential ( $EI < 20$ ), as defined in ASTM D4829. This would require verification subsequent to completion of new footing excavations.

## 2.2.3 Collapsible Soil

Soil hydroconsolidation (hydro-collapse) is a phenomenon that results in relatively rapid settlement of soil deposits due to addition of water. This generally occurs in soils having a loose particle structure cemented together with soluble minerals or with small quantities of clay. Water infiltration into such soils can break down the interparticle cementation, resulting in collapse of the soil structure. Collapsible soils are found primarily in Holocene alluvial fan deposits.

Soil samples, representing the upper alluvial soil, was tested in the laboratory for collapse potential. Test results indicate that 1.1% to 1.8% of hydro-collapse occurred in the tested samples. Therefore, the severity of hydrocollapse potential onsite is considered to range between “No Problem” and “Moderate Problem” based on NAVFAC DM7.01, see Appendix C for Results.

To quantify the hydroconsolidation behavior of the onsite soil, a series of hydrocollapse tests were performed in which the soil samples were loaded to a certain stress (see laboratory test results) state and then saturated. The stress-strain relationship of the test results were utilized to estimate the hydroconsolidation settlement. The result of our analysis indicates that after remedial grading (see Building Pad Preparation section), no significant hydro-consolidation settlement is anticipated due to the added stress of the proposed foundations.

## 2.2.4 Corrosive Soil

To preliminarily assess the sulfate exposure of concrete in contact with the site soils, a representative soil sample was tested for water-soluble sulfate content. The test results suggest the site soils have a negligible potential for sulfate attack (0.027 percent) based on commonly accepted criteria. We recommend following the procedures provided in ACI 318-19, Section 19.3, Table 19.3.2.1 for exposure “S0”. We recommend Type II cement for all concrete work in contact with soil.

Ferrous metal pipes should be protected from potential corrosion by bituminous coating, etc. We recommend that all utility pipes be nonmetallic and/or corrosion resistant. Recommendations should be verified by soluble sulfate and corrosion testing of soil samples obtained from specific locations at the completion of rough grading.

## 2.2.5 Caliche Content

Caliche is a soil containing residually deposited calcification. Caliche occurs in areas of high evaporation rates, typically in desert areas. Evaporation of subsurface water results in chemicals being deposited in the upper layers of soil. Some caliche soils are extremely hard, like soft limestone. Other caliche materials are more variable and only moderately hard. In some areas where caliche is hard, it is difficult to excavate.

The site is underlain by alluvial deposits generally consisting of silty sand with caliche. The alluvium was found to contain moderate levels of caliche content and is very dense. Difficult excavation resistance should be anticipated, especially for smaller grading equipment such as rubber-wheel backhoes.

## 2.3 GROUNDWATER

Groundwater study is not within the scope of our work. Groundwater wasn't encountered in any of our exploratory boreholes, excavated onsite to a depth of 50 feet below ground surface.

Local groundwater information was researched utilizing the California Department of Water Resources, Water Data Library Station Map interactive webpage. The closest well to the site, with groundwater information available, is located approximately 0.40 miles south of the site (State Well 06N03W21R001S). Highest historical groundwater level was recorded at 175 feet below ground surface (groundwater elevation of 2848 feet amsl) on May 8, 1957. Surface elevation onsite is estimated at around 3060 feet amsl.

Please note that the potential for rain or irrigation water locally seeping through from elevated areas and showing up near grades cannot be precluded. Our experience indicates that surface or near-surface groundwater conditions can develop in areas where groundwater conditions did not exist prior to site development, especially in areas where a substantial increase in surface water infiltration results from landscape irrigation. Fluctuations in perched water elevations are likely to occur in the future due to variations in precipitation, temperature, consumptive uses, and other factors including mounding of perched water over bedrock or natural soil. Mitigation for nuisance shallow seeps moving from elevated lower areas will be needed if encountered. These mitigations may include subdrains, horizontal drains, toe drains, french drains, heel drains or other devices.

## 2.4 SEISMIC DESIGN PARAMETERS

Based on current standards, the proposed development is expected to be designed in accordance with the requirements of the 2019 California Building Code (CBC). The 2019 California Building Code (CBC) provides procedures for earthquake resistant structural design that include considerations for on-site soil conditions, occupancy, and the configuration of the structure including the structural system and height.

Based on the soils encountered in the exploratory borehole within the subject site and with consideration of the geologic units mapped in the area, it is our opinion that the site soil profile corresponds to Site Class D in accordance with Section 1613.2.2 of the California Building Code (CBC 2019) and Chapter 20 of ASCE/SEI 7-16.

We have downloaded the seismic design parameters in accordance with the provisions of the current California Building Code (CBC, 2019) and ASCE/SEI 7-16 Standard using the Structural Engineers Association of California, OSHPD Seismic Design Maps Web Application (<https://seismicmaps.org>). The mapped seismic parameters are attached to this report in Appendix D.

The 2019 CBC is based on the guidelines contained within ASCE 7-16 which stipulates that where  $S_1$  is greater than 0.2 times gravity (g) for Site Class D, a ground motion hazard analysis is needed unless the seismic response coefficient ( $C_s$ ) value will be calculated as outlined in Section 11.4.8, Exception 2. Assuming the  $C_s$  value will be calculated as outlined in Section 11.4.8, Exception 2, we recommend the following seismic design parameters.

| Parameter                                 | ASCE 7-16       | 2019 CBC            | Coefficient | Value   |
|-------------------------------------------|-----------------|---------------------|-------------|---------|
| 0.2-second Period MCE                     | Figure 22-1     | Figure 1613.2.1(1)  | $S_s$       | 1.025   |
| 1.0-second Period MCE <sub>R</sub>        | Figure 22-2     | Figure 1613.2.1(2)  | $S_1$       | 0.393   |
| Soil Site Class                           | Figure 20.3-1   | Section 1613.2.2    | Site Class  | D       |
| Site Coefficient                          | Figure 11.4-1   | Section 1613.2.3(1) | $F_a$       | 1.200   |
| Site Coefficient                          | Figure 11.4-2   | Section 1613.2.3(2) | $F_v$       | 1.907 * |
| Adjusted MCE Spectral Response Parameters | Equation 11.4-1 | Equation 16-36      | $S_{MS}$    | 1.230   |
|                                           | Equation 11.4-2 | Equation 16-37      | $S_{M1}$    | 0.749 * |
| Design Spectral Acceleration Parameters   | Equation 11.4-3 | Equation 16-38      | $S_{DS}$    | 0.820   |
|                                           | Equation 11.4-4 | Equation 16-39      | $S_{D1}$    | 0.500 * |

\*The values provided are valid provided the requirements in Exception Note No. 2 in Section 11.4.8 of ASCE 7-16 are met. If not, a site specific ground motion hazard analysis will be required.

## 3.0 TENTATIVE RECOMMENDATIONS

### 3.1 EARTHWORK RECOMMENDATIONS

The following recommendations are provided regarding aspects of the anticipated earthwork construction. These recommendations should be considered subject to revision based on additional geotechnical evaluation of the conditions observed by the Geotechnical Engineer during grading operations. All grading should be performed in accordance with our General Earthwork and Grading Specifications presented in Appendix E except as modified within the text of this report.

#### 3.1.1 Site Clearing, Grubbing and Fill Removal

All debris, undocumented fill, abandoned utility lines, roots, irrigation appurtenances, underground structures, deleterious materials, etc., should be removed and hauled offsite. Cavities created during site clearance should be backfilled in a controlled manner.

#### 3.1.2 Building Pad Preparation

In order to provide adequate support for the proposed structure, the building pad should be overexcavated to a depth of at least 4 feet below existing grade or 2-feet below the bottom of the proposed footings, whichever is deeper. The lateral extent of overexcavation should be at least 5 feet, where achievable.

Once the bottom of the excavation is observed by a representative of this firm to be in competent native soil, the bottom of the overexcavation should be scarified, moisture conditioned, and recompacted to at least 90 percent of the maximum dry density, as determined by ASTM D1557 Test Method; prior to placement of fill. Deeper overexcavation, especially to remove loose soils or deleterious material, may be required depending upon field observations of excavation bottom by the soil engineer or his representative.

#### 3.1.3 Trench Backfill

All utility trench backfills should be mechanically compacted to the minimum requirements of at least 90 percent relative compaction. Onsite soils derived from trench excavations can be used as trench backfill except for deleterious materials. Soils with sand equivalent greater than 30 may be utilized for pipe bedding and shoring. Pipe bedding should be required to provide uniform support for piping. Excavated material from footing trenches should not be placed in slab-on-grade areas unless properly compacted and tested.

#### 3.1.4 Compacted Fills/Imported Soils

Any soil to be placed as fill, whether presently onsite or import, should be approved by the soil engineer or his representative prior to their placement. All onsite soils to be used as fill should be cleansed of any roots, or other deleterious materials. Rocks larger than 8-inches in diameter should be removed from soil to be used as compacted fill.

All fills should be placed in 6- to 8-inch loose lifts, thoroughly watered, or aerated to near optimum moisture content, mixed and compacted to at least 90 or 95 percent relative compaction depending on the material (subgrade soil or aggregate base) and application (pavement subgrade, building pad, etc.). This is relative to the maximum dry density determined by ASTM D1557 Test Method.

Any imported soils should be sandy (preferably USCS "SM" or "SW", and very low in expansion potential) and approved by the soil engineer. The soil engineer or his representative should observe the placement of all fill and take sufficient tests to verify the moisture content and the uniformity and degree of compaction obtained.

### **3.2 TEMPORARY EXCAVATIONS**

All excavation slopes and shoring systems should meet the minimum requirements of the Occupational Safety and Health (OSHA) Standards. Maintaining safe and stable slopes on excavations is the responsibility of the contractor and will depend on the nature of the soils and groundwater conditions encountered and his method of excavation. Excavations during construction should be carried out in such a manner that failure or ground movement will not occur. The contractor should perform any additional studies deemed necessary to supplement the information contained in this report for the purpose of planning and executing his excavation plan.

#### **3.2.1 Excavation Characteristics**

The upper soil onsite is generally composed of very dense younger alluvium which is not expected to exhibit difficult excavation resistance for larger grading equipment in good working condition but may hinder operations on smaller equipment such as rubber-wheel backhoes.

#### **3.2.2 Safe Vertical Cuts**

Temporary un-surcharged excavations of 4 feet high may be made at a vertical gradient for short periods of time. Excavations greater than 4 feet should be sloped back to a gradient no steeper than 2H:1V. Exposed excavation conditions should be verified by the project geotechnical engineer during construction. No excavations should take place without the direct supervision of the project geotechnical engineer. If potentially unstable soil conditions are encountered, modifications of slope ratios for temporary cuts may be required.

#### **3.2.3 Excavation Setbacks**

No excavations should be conducted, without special considerations, along property lines, public right-of-ways, or existing foundations, where the excavation depth will encroach within the “zone of influence”. The “zone of influence” of the existing footings, property lines, or public right-of-way may be assumed to be below a 45-degree line projected down from the bottom edge of the footing, property line, or right-of-way.

#### **3.2.4 Trench Shoring**

The following earth pressures may be utilized to aid in the design of temporary braced shoring systems. The following earth pressures are based on drained conditions (no hydrostatic or buoyant conditions) and the assumption that the shoring is vertical (no batter), and the ground surface in front and behind the shoring is level. For different geometries or conditions, the above lateral earth pressures should be reevaluated.

Braced shoring, up to 15 feet high, may be designed for with a uniform pressure distribution equal to 24H in pounds per square foot, where H is the height of the shoring in feet. For an aerial surcharge placed adjacent to the shoring, an equivalent, horizontal (rectangular) pressure of thirty (50) percent of the surcharge may be assumed to act along the entire length of the shoring. Where a combination of sloped embankment and shoring is used, the pressure would be greater and must be determined for each combination.

### **3.3 FOUNDATION RECOMMENDATIONS**

The proposed building may be supported on conventional shallow foundation systems deriving support in compacted fill. All foundation excavations must be observed and approved by the Geotechnical Engineer's representative, prior to placing steel reinforcement or concrete.

#### **3.3.1 Bearing Capacity**

Spread, continuous, or pad-type foundations carried at least 24-inches below the lowest adjacent grade may be designed to impose a net dead-plus-live load pressure of 2000 psf. A one-third increase may be used for wind or seismic loads.

### 3.3.2 Lateral Resistance

Resistance to lateral footing will be provided by passive earth pressure and base friction. For footings bearing against firm native material, passive earth pressure may be considered to be developed at a rate of 300 psf per foot of depth to a maximum of 2000 psf. Base friction may be computed at 0.40 times the normal load. If passive earth pressure and friction are combined to provide required resistance to lateral forces, the value of the passive pressure should be reduced to two-thirds the value.

### 3.3.3 Settlement

The onsite soils below the foundation depth have relatively high strengths and will not be subject to significant stress increases from foundations of the new structure. Therefore, estimated total long-term static and seismic settlement between similarly loaded adjacent foundation systems should not exceed 1-inch. The structures should be designed to tolerate a differential settlement on the order of 1/2-inch over a 30-foot span.

### 3.3.4 Reinforcement

Footing reinforcement should be determined by the structural engineer; however, minimum reinforcement should be at least two No. 5 reinforcing bars, top and bottom. Reinforcement and size recommendations presented in this report are considered the minimum necessary for the soil conditions present at the foundation level and are not intended to supersede the design of the project structural engineer or criteria of the governing agencies for the project.

## 3.4 SLABS-ON-GRADE

Slabs-on-grade should be at least 4-inches thick for office areas (6 inches for heavy storage and traffic areas). Slab-on-grade reinforcement should be at least No. 4 bars at 16-inches on-center both ways, properly centered in mid thickness of slabs. The structural engineer should design the actual slab thickness and reinforcement based on structural load requirements.

### 3.4.1 Modulus of Subgrade Reaction

A coefficient of vertical subgrade reaction ( $K_v$ ) of 200 psi/in may be assumed for the building pad compacted fill soils. The modulus of subgrade reaction was estimated based on the NAVFAC 7.1 design charts. This value is for a small loaded area (1 sq. ft or less) such as for wheel loads or point loads and should be adjusted for larger loaded areas, as necessary.

### 3.4.2 Capillary Break & Vapor Membrane

If vinyl or other moisture-sensitive floor coverings are planned, we recommend that the floor slab in those areas be underlain by a vapor membrane and capillary break consisting of a minimum 10-mil vapor-retarding membrane over a 4-inch thick layer of clean sand. The 4-inch thick layer of sand should be placed between the subgrade soil and the membrane to decrease the possibility of damage to the membrane.

### 3.4.3 Slab Curling Precautions

A low-slump concrete should be used to minimize possible curling of the slab. Additionally, a layer of sand may be placed over the vapor retarding membrane to reduce slab curling. If this sand bedding is used, care should be taken during the placement of the concrete to prevent displacement of the sand. However, the need for sand and/or the thickness of sand above the moisture vapor barrier should be specified by the structural engineer or concrete contractor. The selection of sand above the barrier is not a geotechnical engineering issue and hence outside our purview.

### 3.4.4 Subgrade Exposure

Construction activities and exposure to the environment can cause deterioration of the prepared subgrade. Therefore, we recommend that our field representative observe the condition of the final subgrade soils immediately prior to slab-on-grade construction, and, if necessary, perform further density and moisture content tests to determine the suitability of the final prepared subgrade.

Additionally, the slab subgrade should be moisture conditioned to 2 to 4 percent above the optimum moisture content, to a depth of 12 inches. The moisture content of the floor slab subgrade soils should be verified by the geotechnical engineer within 24 hours prior to placing the vapor retarding membrane.

## 3.5 RETAINING WALLS

If proposed, the following lateral earth pressures, in conjunction with the lateral resistance parameters provided in the Foundation Recommendations section of this report, may be used for the design of retaining walls with free draining compacted backfills. If passive earth pressure and friction are combined to provide required resistance to lateral forces, the value of the passive pressure should be reduced to two-thirds the following recommendations.

| Lateral Earth Pressure Condition | Soil Backfill Condition | Equivalent Fluid Pressure (pcf) | Earth Pressure Coefficient |
|----------------------------------|-------------------------|---------------------------------|----------------------------|
| Active Case (Drained)*           | Level                   | 40                              | $K_a = 0.33$               |
| At-Rest Case (Drained)           | Level                   | 60                              | $K_o = 0.50$               |
| Total Unit Weight of Soil        |                         | 120 pcf                         |                            |

### 3.5.1 Seismic Earth Pressure

Retaining walls exceeding 6 feet in height shall be designed to resist the additional earth pressure caused by seismic ground shaking. A seismic load of 16 pcf should be used for design of walls that support more than 6 feet of backfill in accordance with Section 1803.5.12 of the 2019 CBC. This incremental pseudo-static pressure was calculated using the methods recommended in NAVFAC 7.2 and a horizontal coefficient equal to one-half of two-thirds  $PGA_M$ .

The seismic load is applied as an equivalent fluid pressure along the height of the wall and the calculated loads result in a maximum load exerted at the base of the wall and zero at the top of the wall. When using the load combination equations from the building code, the seismic earth pressure should be combined with the lateral active earth pressure for analyses of restrained basement walls under seismic loading conditions.

### 3.5.2 Surcharge Loading

Retaining walls should also be designed to resist any lateral surcharges due to the traffic, nearby buildings, construction loads, etc. Surcharge loads within a 1H:1V plane extending up from the base of the wall should be included in the design lateral pressures by multiplying the associated lateral earth pressure coefficient (see table above) with the applied surcharge load. This surcharge load should be applied as a uniform load along the height of the wall. Additional static lateral pressures due to other surcharge loadings in the vicinity of the wall can be estimated using the guidelines provided in Plate 2.

### 3.5.3 Waterproofing

The backfilled side of all retaining walls should be coated with an approved waterproofing compound or covered with a similar material to inhibit migration of moisture through the walls. It is recommended that the waterproofing system should be inspected and approved by the project civil engineer. The use of a water-stop should be considered for all concrete joints. We recommend contacting a waterproofing professional/consultant for specific recommendations for placement, sealing and protection of below grade walls.

### 3.5.4 Drainage and Backfill

We recommend drainage for retaining walls to be provided in accordance with Plate 3 of this report. The backdrain pipe should be connected to a system of closed pipe(s) (non-perforated) that lead to the storm runoff discharge facilities. Retaining wall backdrain must be observed by GeoMat Testing Laboratories prior to wall backfill.

The above earth pressures assume that sufficient drainage will be provided behind the walls to prevent the build-up of hydrostatic pressures from surface and subsurface water infiltration. Back-cut distance for conventional retaining walls should be at least 18 inches to facilitate compaction.

All retaining wall backfill must be compacted to at least 90 percent relative compaction (ASTM D-1557), utilizing equipment that will not damage the wall. Maximum precautions should be taken when placing drainage materials and during backfilling. Onsite soils may be used as backfill.

## 3.6 PAVEMENT RECOMMENDATIONS

The proposed pavement structural section should be underlain by at least 18-inches of engineered fill, compacted to at least 90 percent relative compaction. The subgrade for pavement support must be firm, unyielding, and uniform with no abrupt horizontal changes in degree of support. The subgrade soil should be uniform materials and density. Soft spots, if encountered, should be excavated and recompacted with the same type of soil as found in adjacent subgrade.

### 3.6.1 Aggregate Base

The aggregate base should conform to Caltrans Class 2 Aggregate Base or the Standard Specifications for Public Works for Crushed Miscellaneous Base, should be firm and unyielding, and without pumping conditions prior to placement of pavement. Aggregate base should be compacted to at least 95 percent of the maximum dry density as determined by ASTM D1557.

### 3.6.2 Flexible Pavement Design

The following recommended pavement section is based on the following assumed Traffic Index and R-value. The minimum recommended asphalt concrete (AC) pavement thickness is as follows:

| Pavement Use | Assumed Traffic Index (TI) | R-Value (Assumed) | Minimum Recommended Pavement Section |      | Full AC Pavement Section (No Base) |
|--------------|----------------------------|-------------------|--------------------------------------|------|------------------------------------|
|              |                            |                   | AC                                   | AB   |                                    |
| Light Duty   | 4                          | 50                | 2.5"                                 | 4.0" | 4.0"                               |
| Heavy Duty   | 7                          | 50                | 4.0"                                 | 4.5" | 7.0"                               |

AC: Asphalt Concrete, AB: Aggregate Base.

Final pavement design recommendations should be based on laboratory test results of representative pavement subgrade soils upon the completion of rough grading.

### 3.6.3 Portland Cement Concrete

For interior private drives, 8-inches minimum concrete over compacted native subgrade is recommended. Pavement subgrade should be saturated to a depth of 12-inches and compacted to at least 95 percent relative compaction. Saturated subgrade should be tested for moisture by the soil engineer.

Concrete pavement should be air entrained Portland Cement Concrete Pavement and must have a minimum 28-day flexural strength of 450 psi (compressive strength of approximately 3500 psi).

No reinforcing is necessary. Joint design and spacing should be in accordance with ACI recommendations. Construction joints should contain dowels or be tongue and grooved to provide load transfer. Tie bars are recommended on the joints adjacent to unsupported edges. Maximum joint spacing in feet should not exceed 2 to 3 times the thickness in inches. Joint sealing with a quality silicone sealer is recommended to prevent water from entering the subgrade allowing pumping and loss of support.

Proper subgrade preparation and joint sealing will reduce (but not eliminate) the potential for slab movements (thus cracking) on native soils. Frequent jointing will reduce uncontrolled cracking and increase the efficiency of aggregate interlock joint transfer.

### **3.7 STORMWATER INFILTRATION**

Infiltration testing was conducted utilizing the shallow percolation test method at depths of approximately 96-inches below existing ground surface. The infiltration testing was performed in general accordance with the guidelines published in The County of San Bernardino Areawide Stormwater Program, Technical Guidance Document for Water Quality Management Plans. Refer to Appendix F for field infiltration test data.

| Test No. | Test Depth Below Ground Surface | Adjusted Infiltration Rate (in/hr) |
|----------|---------------------------------|------------------------------------|
| P-1      | 96"                             | 10.91                              |
| P-2      | 96"                             | 9.39                               |
| P-3      | 96"                             | 10.52                              |
| P-4      | 96"                             | 11.31                              |

The raw percolation rate is the rate of water infiltration in the horizontal and vertical direction. This percolation rate is adjusted using the "Porchet Method" to obtain the adjusted water infiltration rate in the vertical direction only.

Long-term infiltration rates may be reduced significantly by factors such as soil variability and inaccuracy in the infiltration rate measurement. Safety factors for operating the system, maintenance, siltation, biofouling, etc. should also be considered by the design civil engineer at his discretion.

Minimum safety factor required by the County of San Bernardino for Suitability Assessment is as follows:

| FACTOR OF SAFETY AND DESIGN INFILTRATION RATE WORKSHEET |                     |                  |                   |
|---------------------------------------------------------|---------------------|------------------|-------------------|
| FACTOR DESCRIPTION                                      | ASSIGNED WEIGHT (W) | FACTOR VALUE (V) | PRODUCT (P = W*V) |
| Soil Assessment Method                                  | 0.25                | 1                | 0.25              |
| Predominant Soil Texture                                | 0.25                | 1                | 0.25              |
| Site Soil Variability                                   | 0.25                | 1                | 0.25              |
| Depth to Groundwater or Impervious Layer                | 0.25                | 1                | 0.25              |
| SUITABILITY ASSESSMENT SAFETY FACTOR, $S_A = \sum P =$  |                     |                  | 1.00              |

The infiltration system must be located such that the closest distance between an adjacent foundation is at least 10 feet in all directions from the zone of saturation. The zone of saturation may be assumed to project downward from the discharge of the infiltration facility at a gradient of 1H:1V. Additional property line or foundation setbacks may be required by the governing jurisdiction and should be incorporated into the stormwater infiltration system design as necessary.

If applicable, 4- to 6-inch diameter observation well(s), with locking cap, extending vertically into the system's bottom is suggested as an observation point. Observation well(s) should be checked regularly and after large storm event. Once performance stabilizes, frequency of monitoring may be reduced.

GeoMat Testing Laboratories should observe the subgrade of excavation. Additional laboratory testing including but not limited to grain size analysis, sand equivalent, sulfate content, etc. should be conducted during construction.

### **3.8 SITE DRAINAGE**

Positive drainage should be provided and maintained for the life of the project around the perimeter of all structures (including slopes and retaining walls) and all foundations toward streets or approved drainage devices to minimize water infiltrating into the underlying natural and engineered fill soils. In addition, finish subgrade adjacent to exterior footings should be sloped down (at least 2%) and away to facilitate surface drainage. Perimeter water collection devices may be installed around the structure to collect roof/irrigation/natural drainage. Roof drainage should be collected and directed away from foundations via nonerosive devices. Over the slope drainage must not be permitted.

Water, either natural or by irrigation, should not be permitted to pond or saturate the foundation soils. Planter areas and large trees adjacent to the foundations are not recommended. All planters and terraces should be provided with drainage devices. Internal drainage should be directed to approved drainage collection devices.

Location of drainage device should be in accordance with the design civil engineer's drainage and erosion control recommendations. The owner should be made aware of the potential problems, which may develop when drainage is altered through construction of retaining walls, patios and other devices. Ponded water, leaking irrigation systems, over watering or other conditions which could lead to ground saturation should be avoided. Surface and subsurface runoff from adjacent properties should be controlled. Area drainage collection should be directed through approved drainage devices. All drainage devices should be properly maintained.

## 4.0 ADDITIONAL SERVICES

### Plan Reviews

The recommendations provided in this report are based on preliminary information and subsurface conditions as interpreted from limited exploratory boreholes at the site. We should be retained to review the final project plans to revise our conclusions and recommendations, as necessary. Professional fees will apply for each review.

Our conclusions and recommendations should also be reviewed and verified during site grading and revised accordingly if exposed geotechnical conditions vary from our preliminary findings and interpretations.

### Additional Observation and/or Testing

GeoMat Testing Laboratories, Inc. should observe and/or test at the following stages of construction.

- During overexcavation and placement of compacted fill.
- During footing excavation and prior to placement of footing materials.
- Following slab subgrade compaction and saturation for moisture testing.
- During all trench and wall backfills.
- When any unusual conditions are encountered.

### Final Report of Compaction During Grading

A final report of compaction control should be prepared subsequent to the completion of grading. The report should include a summary of work performed, laboratory test results, and the results and locations of field density tests performed during grading.

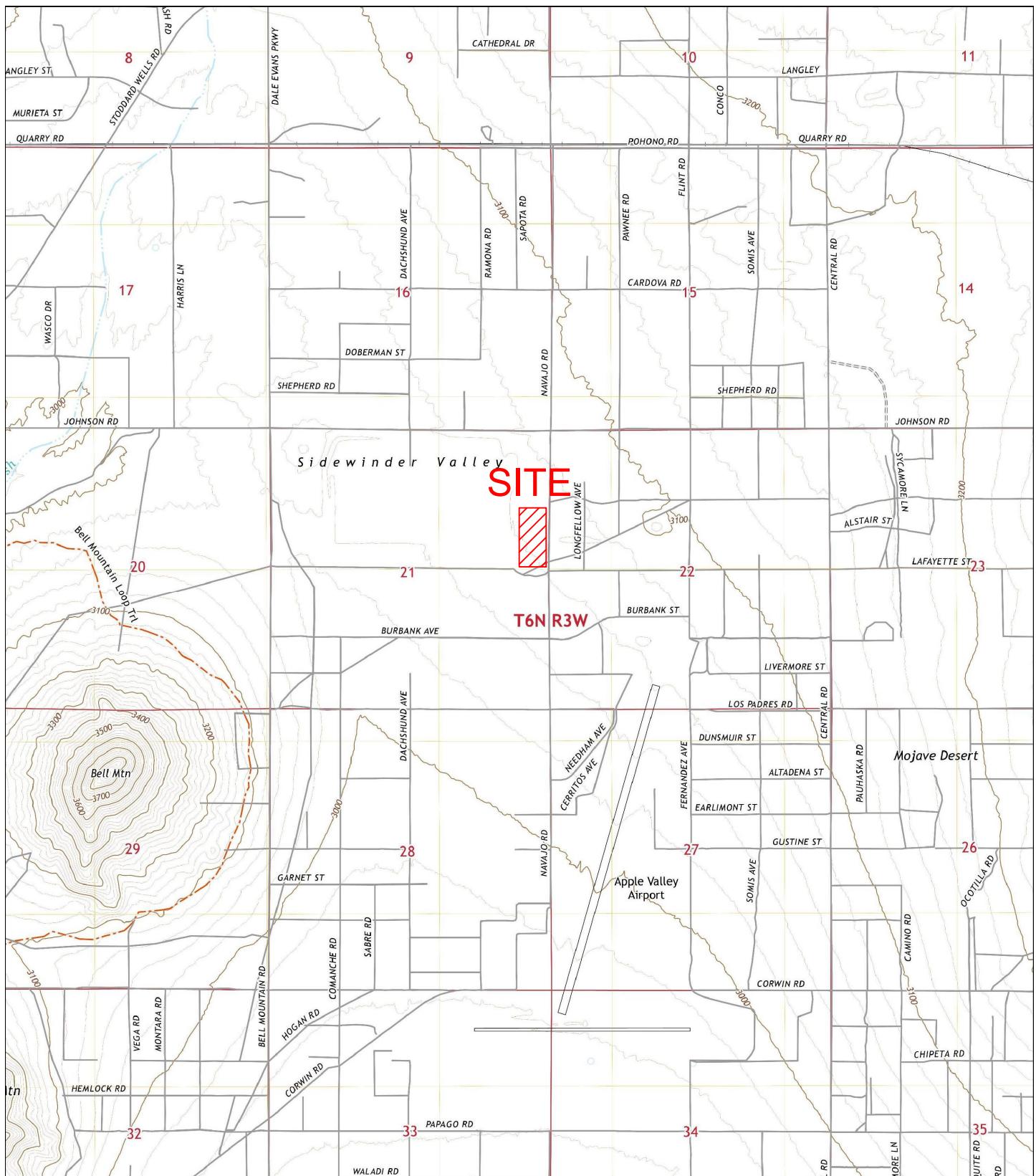
## 5.0 GEOTECHNICAL RISK

The concept of risk is an important aspect of the geotechnical evaluation. The primary reason for this is that the analytical methods used to develop geotechnical recommendations do not comprise an exact science. The analytical tools which geotechnical engineers use are generally empirical and must be used in conjunction with engineering judgment and experience. Therefore, the solutions and recommendations presented in the geotechnical evaluation should not be considered risk-free and, more importantly, are not a guarantee that the interaction between the soils and the proposed structure will perform as planned.

The engineering recommendations presented in the preceding sections constitute GeoMat Testing Laboratories professional estimate of those measures that are necessary for the proposed development to perform according to the proposed design based on the information generated and referenced during this evaluation, and GeoMat Testing Laboratories experience in working with these conditions.

## 6.0 LIMITATION OF INVESTIGATION

This report was prepared for the exclusive use on the new construction. The use by others, or for the purposes other than intended, is at the user's sole risk.


Our investigation was performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable Geotechnical Engineers practicing in this or similar locations within the limitations of scope, schedule, and budget. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

The field and laboratory test data are believed representative of the site; however, soil conditions can vary significantly. As in most projects, conditions revealed during construction may be at variance with preliminary findings. If this condition occurs, the possible variations must be evaluated by the Project Geotechnical Engineer and adjusted as required or alternate design recommended.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information and recommendations contained herein are brought to the attention of the engineer for the development and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractor carry out such recommendations in the field.

This firm does not practice or consult in the field of safety engineering. We do not direct the contractor's operations, and we cannot be responsible for other than our own personnel on the site; therefore, the safety of others is the responsibility of the contractor. The contractor should notify the owner if he considers any of the recommended actions presented herein to be unsafe.

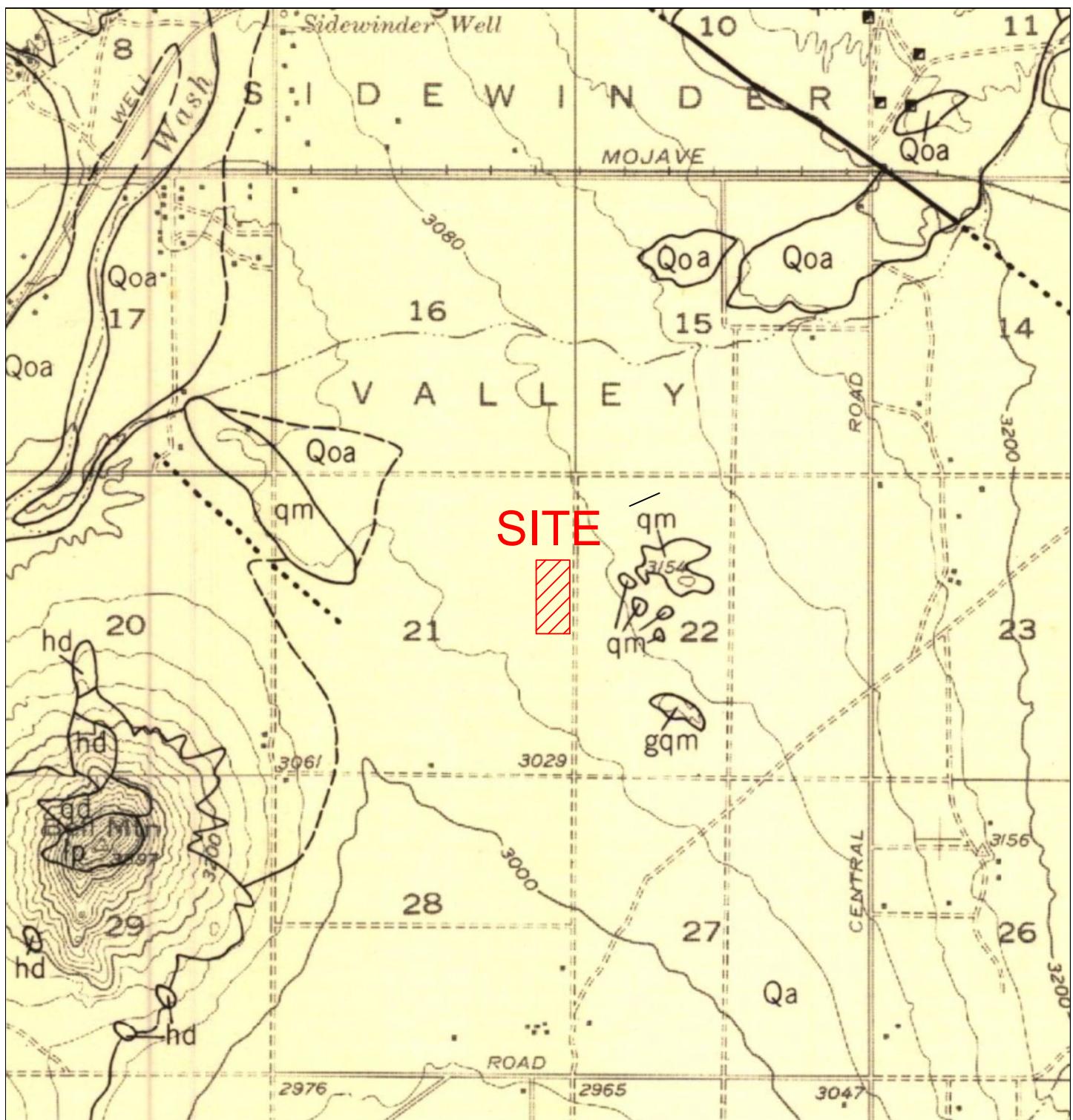
The findings, conclusions, and recommendations presented herein are based on our understanding of the proposed development and on subsurface conditions observed during our site work, and are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge.



USGS, THE NATIONAL MAP, US TOPO, APPLE VALLEY NORTH, 2021

ALL LOCATIONS ARE APPROXIMATE




0 0.25 0.5 1.0  
APPROXIMATE SCALE (MILES)



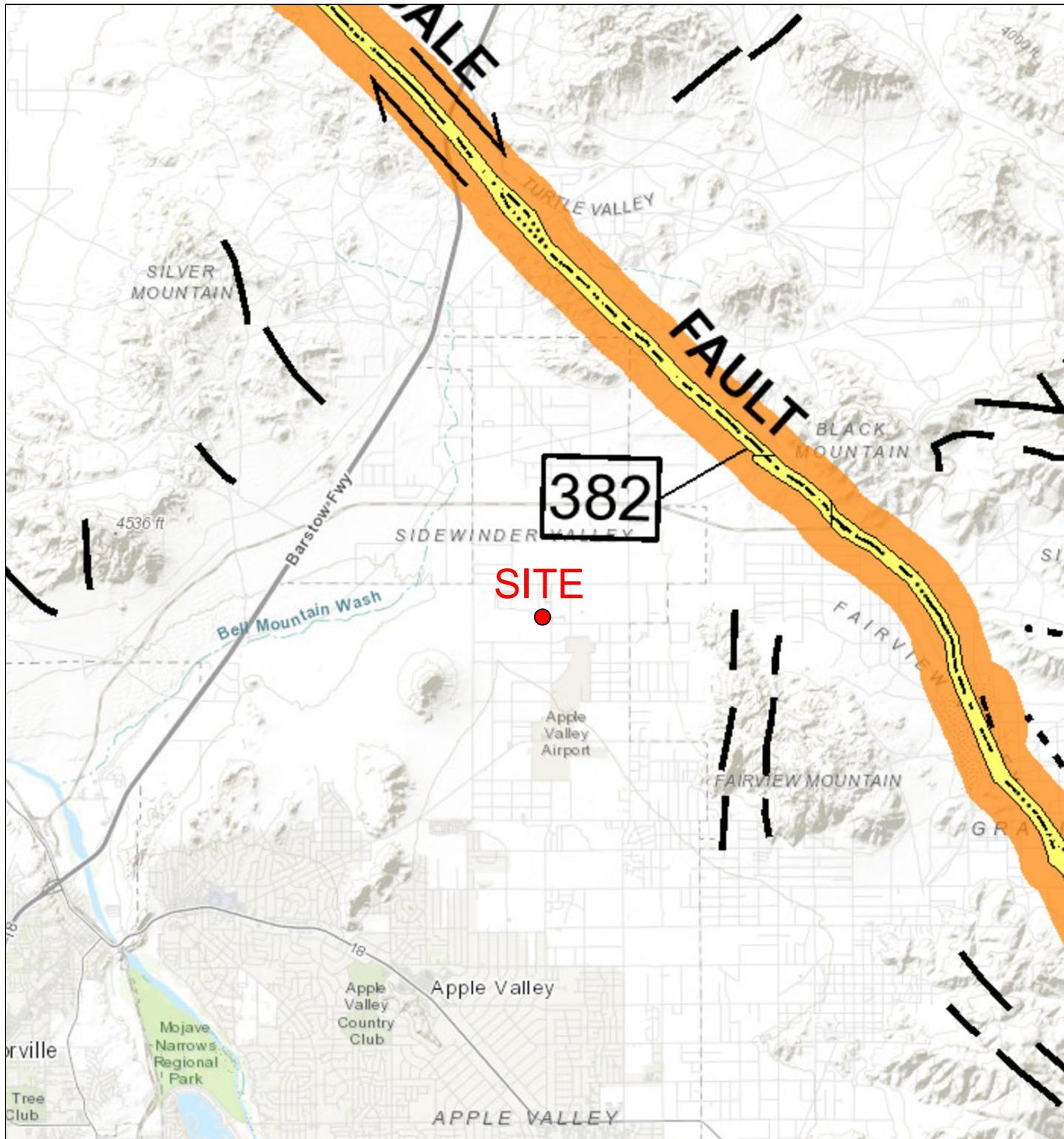
|             |               |                                                                                                          |
|-------------|---------------|----------------------------------------------------------------------------------------------------------|
| DNW BY:     | AM            | PROJECT: PRELIMINARY SOIL INVESTIGATION REPORT<br>APN: 0463-231-06<br>APPLE VALLEY, CALIFORNIA<br>TITLE: |
| CHK'D BY:   | MN            |                                                                                                          |
| DATUM:      | --            |                                                                                                          |
| PROJECTION: | --            |                                                                                                          |
| SCALE:      | 1" = 1/4 MILE |                                                                                                          |
| REV. NO.:   | --            |                                                                                                          |

## SITE LOCATION MAP

|              |          |
|--------------|----------|
| DATE:        | MAY 2022 |
| PROJECT NO.: | 22160-01 |
| FIGURE NO.:  | Figure 1 |



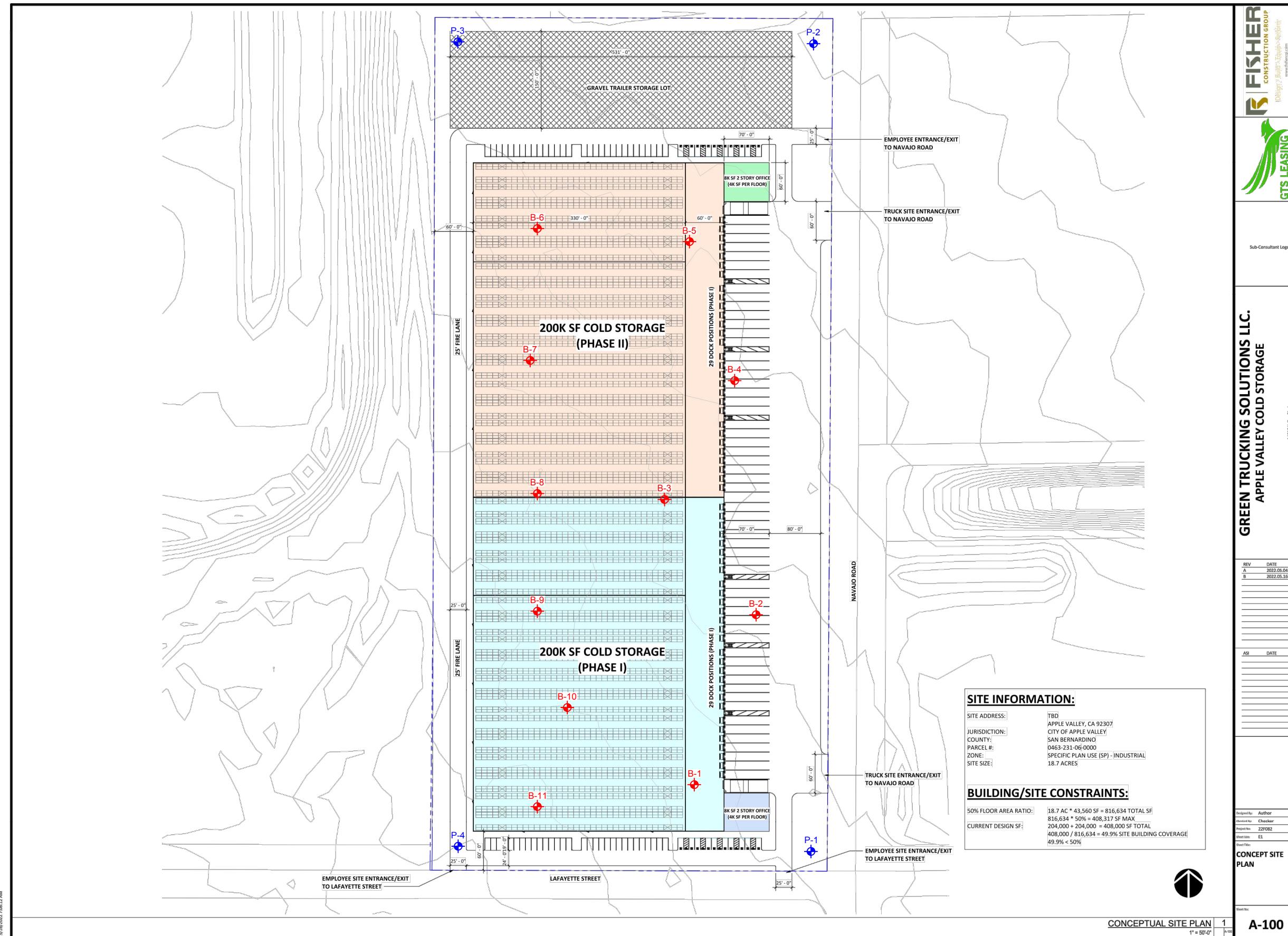
## LEGEND


Qa: Alluvial silt, sand, gravel, and fanglomerate  
Qoa: Older alluvial gravel, sand, and silt  
qm: Quartz monzonite  
gqm: Granite and quartz monzonite  
qd: Quartz diorite

## REFERENCE MAP:

Dibblee, T.W., 1960, Preliminary geologic map of the Apple Valley quadrangle, California, U.S. Geological Survey, Mineral Investigations Field Studies Map MF-232, 1:62,500.



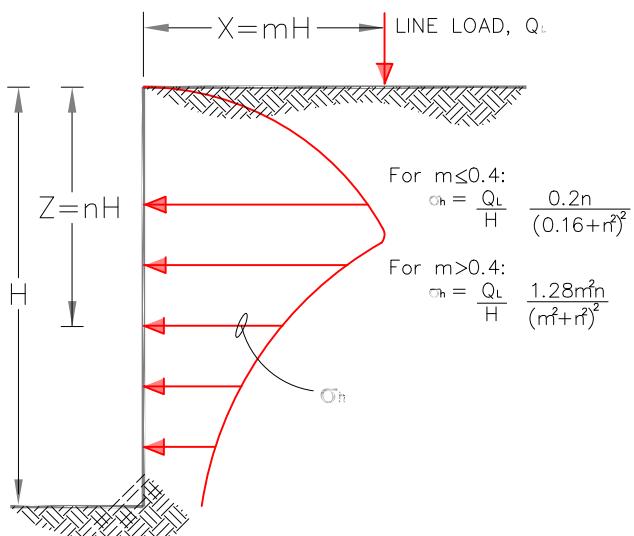

|                                                                      |                                  |                                                                                                                                   |                       |
|----------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| DWN BY:<br>CHK'D BY:<br>DATUM:<br>PROJECTION:<br>SCALE:<br>REV. NO.: | AM<br>MN<br>--<br>--<br>--<br>-- | PROJECT: PRELIMINARY SOIL INVESTIGATION REPORT<br>APN: 0463-231-06<br>APPLE VALLEY, CALIFORNIA<br>TITLE:<br>REGIONAL GEOLOGIC MAP | DATE:<br>MAY 2022     |
|                                                                      |                                  |                                                                                                                                   | PROJECT NO.: 22160-01 |
|                                                                      |                                  |                                                                                                                                   | FIGURE NO.: Figure 2  |



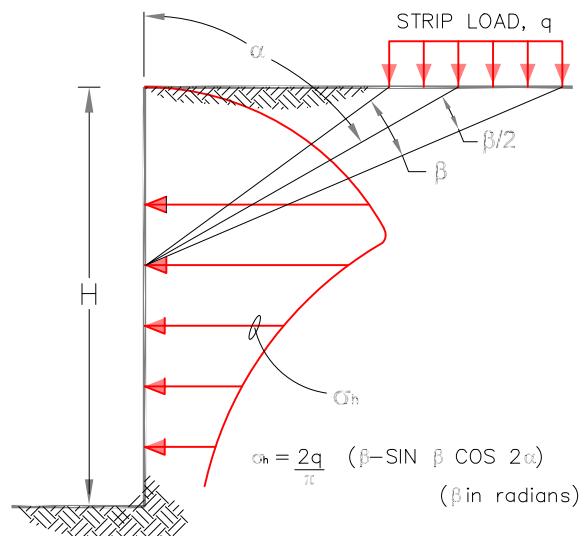
#### FAULT EXPLANATION:

|                             |                             |                                                |                             |
|-----------------------------|-----------------------------|------------------------------------------------|-----------------------------|
| Historic Fault Displacement | Holocene Fault Displacement | Evidence of Late Quaternary Fault Displacement | Undivided Quaternary Faults |
|                             |                             |                                                | Alquist-Priolo Fault Zone   |

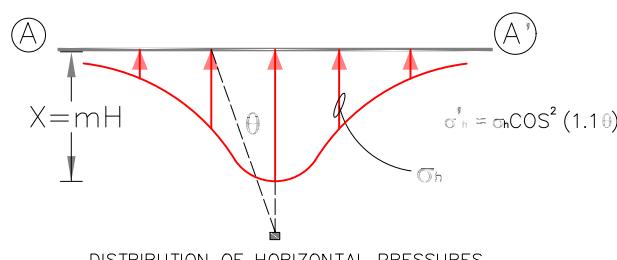
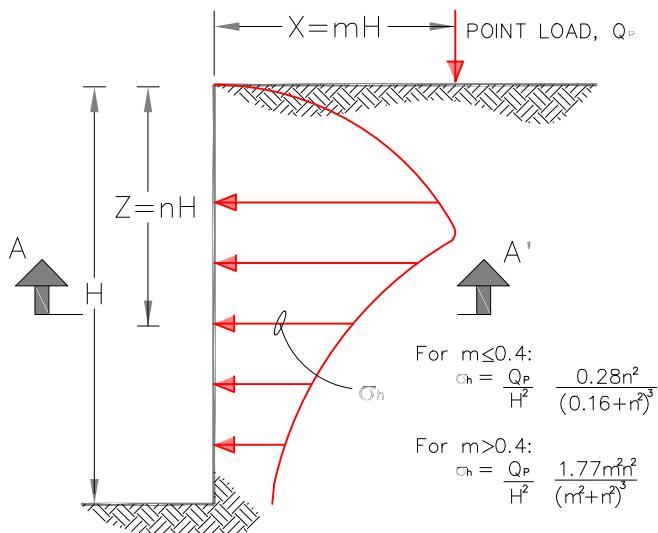
REFERENCES: Jennings, C.W. and Bryant, W.A., 2010, "Fault Activity Map of California," California Geological Survey, GDM-006, May 2010




Autodesk Docs//Green Trucking Solutions LLC/GTS - Cold Storage - Phase 1-A\_v22.rvt  
1/16/2022 7:08:12 AM


Autodesk Docs://Green 1  
5/16/2022 7:08:12 AM

**EXPLORATORY BOREHOLE LOCATION MAP**  
**PROPOSED COLD STORAGE FACILITY**  
**APN: 0463-231-06**



|                                                                                                  |  |                                 |            |
|--------------------------------------------------------------------------------------------------|--|---------------------------------|------------|
| PREPARED BY:                                                                                     |  | DATE: MAY 2022                  | PLATE<br>1 |
| <br>geo mat |  | DRAWN BY: AM                    |            |
| geomat Testing Laboratories, Inc.                                                                |  | CHECKED BY: HMN                 |            |
| 9980 Indiana Avenue, Suite 14                                                                    |  | PROJECT NO.: 22160-01           |            |
| Riverside, California                                                                            |  | SCALE: SEE ABOVE<br>(11" x 17") |            |

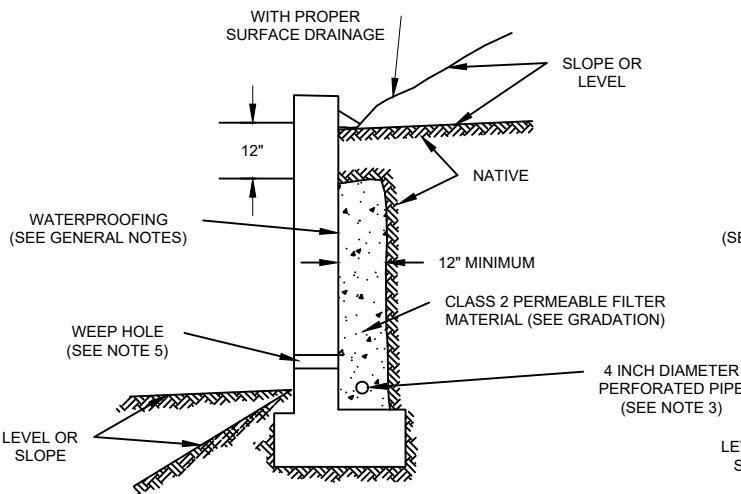


LINE LOAD PARALLEL TO WALL

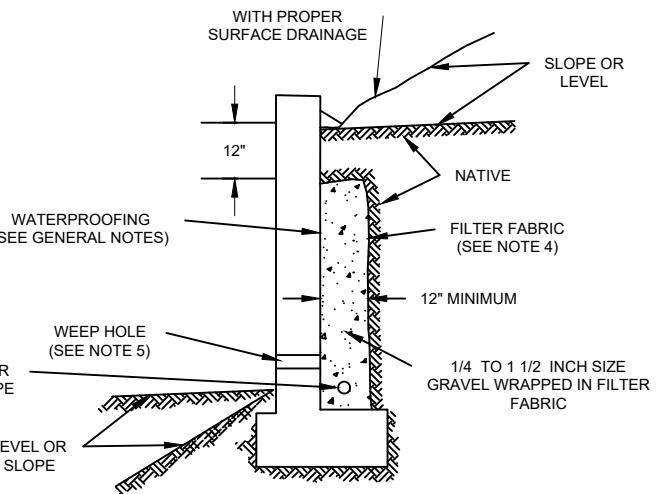


STRIP LOAD PARALLEL TO WALL




VERTICAL POINT LOAD

NOTES:


1. These guidelines apply to rigid walls with Poisson's ratio assumed to be 0.5 for backfill materials.
2. Lateral pressures from any combination of above loads may be determined by the principle of superposition.

**PLATE 2 - RETAINING WALL SURCHARGE DETAIL**

OPTION 1: PIPE SURROUNDED WITH  
CLASS 2 PERMEABLE MATERIAL



OPTION 2: GRAVEL WRAPPED  
IN FILTER FABRIC



Class 2 Filter Permeable Material Gradation  
Per Caltrans Specifications

| Sieve Size | Percent Passing |
|------------|-----------------|
| 1"         | 100             |
| 3/4"       | 90-100          |
| 3/8"       | 40-100          |
| No. 4      | 25-40           |
| No. 8      | 18-33           |
| No. 30     | 5-15            |
| No. 50     | 0-7             |
| No. 200    | 0-3             |

GENERAL NOTES:

- \*Waterproofing should be provided where moisture nuisance problem through the wall is undesirable.
- \*Water proofing of the walls is not under the purview of the geotechnical engineer.
- \*All drains should have a gradient of 1 percent minimum.
- \*Outlet portion of the subdrain should have a 4-inch diameter solid pipe discharged into a suitable disposal area designed by the project engineer. The subdrain pipe should be accessible for maintenance (rodding).
- \*Other subdrain backfill options are subject to the review by the geotechnical engineer and modification of design parameters.

Notes:

- 1) Sand should have a sand equivalent of 30 or greater and may be densified by water jetting.
- 2) 1 Cu. ft. per ft. of 1/4 - to 1 1/2 -inch size gravel wrapped in filter fabric
- 3) Pipe type should be ASTM D1527 Acrylonitrile Butadiene Styrene (ABS) SDR35 or ASTM D1785 Polyvinyl Chloride plastic (PVC), Schedule 40, Armco A2000 PVC, or approved equivalent. Pipe should be installed with perforations down. Perforations should be 3/8 -inch in diameter placed at the ends of a 120-degree arc in two rows at 3-inch on center (staggered).
- 4) Filter Fabric should be Mirafi 140NC or approved equivalent.
- 5) Weephole should be 3-inch minimum diameter and provided at 10-foot maximum intervals. If exposure is permitted, weepholes should be located 12-inches above finished grade. If exposure is not permitted, such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk to be discharged through the curb face or equivalent should be provided. For a basement-type wall, a proper subdrain outlet system should be provided.
- 6) Retaining wall plans should be reviewed and approved by the geotechnical engineer.
- 7) Walls over six feet in height are subject to a special review by the geotechnical engineer and modifications to the above requirements.

**PLATE 3 - RETAINING WALL BACKFILL AND SUBDRAIN DETAIL**

# APPENDIX A

## SELECTED REFERENCES



**GeoMat Testing Laboratories, Inc.**  
Geotechnical Engineering  
Engineering Geology  
Material Testing

**Inland Empire**  
9980 Indiana Ave, Suite 14  
Riverside, California 92503  
Office (951) 688-5400

**Los Angeles**  
5714 W. 96<sup>th</sup> Street  
Los Angeles, California 90045  
Office (310) 337-9400

[geomatlabs.com](http://geomatlabs.com)

## SELECTED REFERENCES

Fisher Construction Group, Green Trucking Solutions, LLC., Apple Valley Cold Storage, Conceptual Site Plan, May 16, 2022.

Dibblee, T.W., 1960, Preliminary geologic map of the Apple Valley quadrangle, California, U.S. Geological Survey, Mineral Investigations Field Studies Map MF-232, 1:62,500.

Town of Apple Valley, 2009 General Plan, Chapter IV – Environmental Hazards

San Bernardino County, General Plan, Geologic Hazards Overlays Map, EH31C

USGS TopoView Interactive Webpage (<https://ngmdb.usgs.gov/topoview/viewer/#4/39.98/-107.53>)

Structural Engineers Association of California, OSHPD Seismic Design Maps Interactive Website (<https://seismicmaps.org/>)

Department of the Navy, Design Manual 7.01, Soil Mechanics, September 1986.

Department of the Navy, Design Manual 7.02, Foundation and Earth Structures, September 1986.

Department of the Army, US Army Corps of Engineers, Engineering and Design, Bearing Capacity of Soils, EM 1110-1-1905.

Foundation Design, D. Cuduto, Second Edition, 2000.

Robert Day, Geotechnical Engineer's Portable Handbook.

Robert Day, Geotechnical Foundation Handbook.

## APPENDIX B

### BOREHOLE LOGS



**GeoMat Testing Laboratories, Inc.**  
Geotechnical Engineering  
Engineering Geology  
Material Testing

**Inland Empire**  
9980 Indiana Ave, Suite 14  
Riverside, California 92503  
Office (951) 688-5400

**Los Angeles**  
5714 W. 96<sup>th</sup> Street  
Los Angeles, California 90045  
Office (310) 337-9400

[geomatlabs.com](http://geomatlabs.com)

| CONSISTENCY OF COHESIVE SOILS |                                       |                           |               |                                                                 |
|-------------------------------|---------------------------------------|---------------------------|---------------|-----------------------------------------------------------------|
| Descriptor                    | Unconfined Compressive Strength (tsf) | Pocket Penetrometer (tsf) | Torvane (tsf) | Field Approximation                                             |
| Very Soft                     | < 0.25                                | < 0.25                    | < 0.12        | Easily penetrated several inches by fist                        |
| Soft                          | 0.25 - 0.50                           | 0.25 - 0.50               | 0.12 - 0.25   | Easily penetrated several inches by thumb                       |
| Medium Stiff                  | 0.50 - 1.0                            | 0.50 - 1.0                | 0.25 - 0.50   | Can be penetrated several inches by thumb with moderate effort  |
| Stiff                         | 1.0 - 2.0                             | 1.0 - 2.0                 | 0.50 - 1.0    | Readily indented by thumb but penetrated only with great effort |
| Very Stiff                    | 2.0 - 4.0                             | 2.0 - 4.0                 | 1.0 - 2.0     | Readily indented by thumbnail                                   |
| Hard                          | > 4.0                                 | > 4.0                     | > 2.0         | Indented by thumbnail with difficulty                           |

| APPARENT DENSITY OF COHESIONLESS SOILS |                                |
|----------------------------------------|--------------------------------|
| Descriptor                             | SPT N60 - Value (blows / foot) |
| Very Loose                             | 0 - 4                          |
| Loose                                  | 5 - 10                         |
| Medium Dense                           | 11 - 30                        |
| Dense                                  | 31 - 50                        |
| Very Dense                             | > 50                           |

| MOISTURE   |                                                       |
|------------|-------------------------------------------------------|
| Descriptor | Criteria                                              |
| Dry        | Absence of moisture, dusty, dry to the touch          |
| Moist      | Damp but no visible water                             |
| Wet        | Visible free water, usually soil is below water table |

| PERCENT OR PROPORTION OF SOILS |                                                        |
|--------------------------------|--------------------------------------------------------|
| Descriptor                     | Criteria                                               |
| Trace                          | Particles are present but estimated to be less than 5% |
| Few                            | 5 to 10%                                               |
| Little                         | 15 to 25%                                              |
| Some                           | 30 to 45%                                              |
| Mostly                         | 50 to 100%                                             |

| SOIL PARTICLE SIZE |                |                               |
|--------------------|----------------|-------------------------------|
| Descriptor         | Size           |                               |
| Boulder            | > 12 inches    |                               |
| Cobble             | 3 to 12 inches |                               |
| Gravel             | Coarse         | 3/4 inch to 3 inches          |
|                    | Fine           | No. 4 Sieve to 3/4 inch       |
| Sand               | Coarse         | No. 10 Sieve to No. 4 Sieve   |
|                    | Medium         | No. 40 Sieve to No. 10 Sieve  |
|                    | Fine           | No. 200 Sieve to No. 40 Sieve |
| Silt and Clay      |                | Passing No. 200 Sieve         |

| PLASTICITY OF FINE-GRAINED SOILS |                                                                                                                                                                                                                                    |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Descriptor                       | Criteria                                                                                                                                                                                                                           |
| Nonplastic                       | A 1/8-inch thread cannot be rolled at any water content.                                                                                                                                                                           |
| Low                              | The thread can barely be rolled, and the lump cannot be formed when drier than the plastic limit.                                                                                                                                  |
| Medium                           | The thread is easy to roll, and not much time is required to reach the plastic limit; it cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.                                 |
| High                             | It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit. |

#### SOIL CLASSIFICATION CHART

| MAJOR DIVISIONS                                                                    |                                                                                                                      | SYMBOLS                                                                                              | TYPICAL DESCRIPTIONS                                                 |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| COARSE GRAINED SOILS                                                               | GRAVEL AND GRAVELY SOILS<br>MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE                                 | CLEAN GRAVELS (LITTLE OR NO FINES)                                                                   | GW WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES   |  |
|                                                                                    |                                                                                                                      | GRAVELS WITH FINES (APPRECIABLE AMOUNT OF FINES)                                                     | GP POORLY GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES |  |
|                                                                                    | SAND AND SANDY SOILS<br>MORE THAN 50% OF COARSE FRACTION PASSING NO. 4 SIEVE                                         | CLEAN SANDS (LITTLE OR NO FINES)                                                                     | GM SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES                      |  |
|                                                                                    |                                                                                                                      | SANDS WITH FINES (APPRECIABLE AMOUNT OF FINES)                                                       | GC CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES                     |  |
| FINE GRAINED SOILS<br>MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE | SILTS AND CLAYS<br>LIQUID LIMIT LESS THAN 50                                                                         | SW WELL-GRADED SANDS, GRAVELY SANDS, LITTLE OR NO FINES                                              |                                                                      |  |
|                                                                                    |                                                                                                                      | SP POORLY GRADED SANDS, GRAVELY SANDS, LITTLE OR NO FINES                                            |                                                                      |  |
|                                                                                    | SILTS AND CLAYS<br>LIQUID LIMIT GREATER THAN 50                                                                      | SM SILTY SANDS, SAND - SILT MIXTURES                                                                 |                                                                      |  |
|                                                                                    |                                                                                                                      | SC CLAYEY SANDS, SAND - CLAY MIXTURES                                                                |                                                                      |  |
| HIGHLY ORGANIC SOILS                                                               | ML INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILT, OR CLAY, FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY | ML                                                                                                   |                                                                      |  |
|                                                                                    |                                                                                                                      | CL INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS | CL                                                                   |  |
|                                                                                    |                                                                                                                      | OL INORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY                                         | OL                                                                   |  |
|                                                                                    |                                                                                                                      | MH INORGANIC CLAYS OF HIGH PLASTICITY                                                                | MH                                                                   |  |
|                                                                                    | CH INORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS                                                       | CH                                                                                                   |                                                                      |  |
|                                                                                    |                                                                                                                      | OH ORGANIC CLAYS WITH HIGH ORGANIC CONTENTS                                                          | OH                                                                   |  |
|                                                                                    | PT PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS                                                               | PT                                                                                                   |                                                                      |  |

NOTE: Dual symbols are used to indicate gravels or sand with 5-12% fines and soils with fines classifying as CL-ML. Symbols separated by a slash indicate borderline soil classifications.





PROJECT:

APN: 0463-231-06  
Apple Valley, California

## Log of Boring

B-3

Longitude:  
Latitude:  
Elevation:

| Project No. 22160-01                     |      |        |             |               |        | Location: See Plate 1    | Borehole Logged by: RM                                                                                                                              |  |
|------------------------------------------|------|--------|-------------|---------------|--------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Excavating Co. / Rig: GeoMat / CME-45    |      |        |             |               |        | Date Started: 5/23/2022  | Depth to Groundwater: N/A ft                                                                                                                        |  |
| Method: Hollow-Stem Auger                |      |        |             |               |        | Date Finished: 5/23/2022 | Depth to Bedrock: N/A ft                                                                                                                            |  |
| Hammer Weight / Drop: 140 lbs./30-inches |      |        |             |               |        | Hammer Type: Automatic   | Total Depth of Borehole: 20 ft                                                                                                                      |  |
| SAMPLES                                  |      |        |             |               |        | LABORATORY TEST DATA     |                                                                                                                                                     |  |
| Depth (ft)                               | Type | Sample | Blows / 6"  | SPT "N" Value | Symbol | Classification (USCS)    | MATERIAL DESCRIPTION                                                                                                                                |  |
| 5                                        | B    |        |             |               |        | SW-SM / SM               | <b>SAND WITH SILT / SILTY SAND</b><br>orange-brown, fine to coarse grained sand, few to some silt dry, very dense, cemented, moderate caliche veins |  |
| 5                                        | R    |        | 50/6"       | >50           |        |                          |                                                                                                                                                     |  |
| 10                                       | S    |        | 50/6" 45/3" | >50           |        | SM                       | <b>SILTY SAND</b><br>orange-brown silty fine to coarse grained sand dry, very dense, cemented, moderate caliche veins                               |  |
| 10                                       | S    |        | 50/6" 40/2" | >50           |        |                          |                                                                                                                                                     |  |
| 20                                       | S    |        | 50/7" 50/5" | >50           |        |                          | TD = 20'                                                                                                                                            |  |
| 25                                       |      |        |             |               |        |                          |                                                                                                                                                     |  |
| 30                                       |      |        |             |               |        |                          |                                                                                                                                                     |  |
| 35                                       |      |        |             |               |        |                          |                                                                                                                                                     |  |
| 40                                       |      |        |             |               |        |                          |                                                                                                                                                     |  |
| 45                                       |      |        |             |               |        |                          |                                                                                                                                                     |  |
| 50                                       |      |        |             |               |        |                          |                                                                                                                                                     |  |

## LOG LEGEND

|  |                   |
|--|-------------------|
|  | Bedrock/Formation |
|  | Gravels           |
|  | Clean Sands       |
|  | Sils              |
|  | Clayey Sands      |
|  | Clays             |

Silty Sands

Sils

Clayey Sands

Clays

B

R

S

D

Bulk "Grab" Sample (B)

Modified California Ring (R)

Standard Penetration (S)

Modified Dames & Moore (D)

G

M

S

N

Groundwater (Groundwater (During Drilling))

Groundwater (Groundwater (Stabilized))

Disturbed Sample

No Sample Recovery

GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.

PROJECT:

APN: 0463-231-06  
Apple Valley, California

## Log of Boring

B-4

Longitude:  
Latitude:  
Elevation:

| Project No. 22160-01                     |      |        |            |               |        | Location:             | See Plate 1                                                                                                       | Borehole Logged by: RM   |                   |                                                          |
|------------------------------------------|------|--------|------------|---------------|--------|-----------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|----------------------------------------------------------|
| Excavating Co. / Rig: GeoMat / CME-45    |      |        |            |               |        | Date Started:         | 5/24/2022                                                                                                         | Depth to Groundwater:    | N/A               | ft                                                       |
| Method: Hollow-Stem Auger                |      |        |            |               |        | Date Finished:        | 5/24/2022                                                                                                         | Depth to Bedrock:        | N/A               | ft                                                       |
| Hammer Weight / Drop: 140 lbs./30-inches |      |        |            |               |        | Hammer Type:          | Automatic                                                                                                         | Total Depth of Borehole: | 20                | ft                                                       |
| SAMPLES                                  |      |        |            |               |        | LABORATORY TEST DATA  |                                                                                                                   |                          |                   |                                                          |
| Depth (ft)                               | Type | Sample | Blows / 6" | SPT "N" Value | Symbol | Classification (USCS) | MATERIAL DESCRIPTION                                                                                              |                          |                   |                                                          |
| 5                                        | R    |        | 50/6"      | >50           |        |                       | SILTY SAND<br>orange-brown silty fine to coarse grained sand<br>dry, very dense, cemented, moderate caliche veins |                          |                   |                                                          |
| 10                                       | S    |        | 50/5"      | >50           |        |                       |                                                                                                                   |                          |                   |                                                          |
| 15                                       | S    |        | 50/6"      | >50           |        |                       |                                                                                                                   |                          |                   |                                                          |
| 20                                       | S    |        | 50/6"      | >50           |        |                       | TD = 20'                                                                                                          |                          |                   |                                                          |
|                                          |      |        |            |               |        |                       | Moisture Content (%)                                                                                              | Dry Density (pcf)        | Fines Content (%) | Unconfined Compressive Strength by Pocket Pen., qu (tsf) |
|                                          |      |        |            |               |        |                       | 3                                                                                                                 | 110                      |                   | Liquid Limit                                             |
|                                          |      |        |            |               |        |                       |                                                                                                                   |                          |                   | Plastic Limit                                            |
|                                          |      |        |            |               |        |                       |                                                                                                                   |                          |                   | Plast. Index                                             |

## LOG LEGEND

|  |                   |
|--|-------------------|
|  | Bedrock/Formation |
|  | Gravels           |
|  | Clean Sands       |
|  | Sils              |
|  | Clayey Sands      |
|  | Clays             |

Silty Sands



Bulk "Grab" Sample (B)



Groundwater (Groundwater (During Drilling



Modified California Ring (R)



Groundwater (Groundwater (Stabilized)



Standard Penetration (S)



Disturbed Sample



Modified Dames &amp; Moore (D)



No Sample Recovery

GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.

PROJECT:

APN: 0463-231-06  
Apple Valley, California

## Log of Boring

B-5

Longitude:  
Latitude:  
Elevation:

| Project No. 22160-01                     |      |        |            |               |        | Location:             | See Plate 1                                                                                                       | Borehole Logged by: RM   |                   |                                                          |
|------------------------------------------|------|--------|------------|---------------|--------|-----------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|----------------------------------------------------------|
| Excavating Co. / Rig: GeoMat / CME-45    |      |        |            |               |        | Date Started:         | 5/24/2022                                                                                                         | Depth to Groundwater:    | N/A               | ft                                                       |
| Method: Hollow-Stem Auger                |      |        |            |               |        | Date Finished:        | 5/24/2022                                                                                                         | Depth to Bedrock:        | N/A               | ft                                                       |
| Hammer Weight / Drop: 140 lbs./30-inches |      |        |            |               |        | Hammer Type:          | Automatic                                                                                                         | Total Depth of Borehole: | 20                | ft                                                       |
| SAMPLES                                  |      |        |            |               |        | LABORATORY TEST DATA  |                                                                                                                   |                          |                   |                                                          |
| Depth (ft)                               | Type | Sample | Blows / 6" | SPT "N" Value | Symbol | Classification (USCS) | MATERIAL DESCRIPTION                                                                                              |                          |                   |                                                          |
| 5                                        | R    |        | 50/6"      | >50           |        |                       | SILTY SAND<br>orange-brown silty fine to coarse grained sand<br>dry, very dense, cemented, moderate caliche veins |                          |                   |                                                          |
| 10                                       | R    |        | 60/6"      | >50           |        |                       | sample disturbed                                                                                                  |                          |                   |                                                          |
| 15                                       | S    |        | 50/6"      | >50           |        |                       |                                                                                                                   |                          |                   |                                                          |
| 20                                       | S    |        | 50/6"      | >50           |        |                       | TD = 20'                                                                                                          |                          |                   |                                                          |
|                                          |      |        |            |               |        |                       | Moisture Content (%)                                                                                              | Dry Density (pcf)        | Fines Content (%) | Unconfined Compressive Strength by Pocket Pen., qu (tsf) |
|                                          |      |        |            |               |        |                       | 3                                                                                                                 | 124                      |                   | Liquid Limit                                             |
|                                          |      |        |            |               |        |                       |                                                                                                                   |                          |                   | Plastic Limit                                            |
|                                          |      |        |            |               |        |                       |                                                                                                                   |                          |                   | Plast. Index                                             |

## LOG LEGEND

|  |                   |
|--|-------------------|
|  | Bedrock/Formation |
|  | Gravels           |
|  | Clean Sands       |
|  | Sils              |
|  | Clayey Sands      |
|  | Clays             |

Silty Sands

B

|  |                              |
|--|------------------------------|
|  | Modified California Ring (R) |
|  | Standard Penetration (S)     |
|  | Modified Dames & Moore (D)   |
|  | No Sample Recovery           |

B

|  |                                             |
|--|---------------------------------------------|
|  | Groundwater (Groundwater (During Drilling)) |
|  | Groundwater (Groundwater (Stabilized))      |

G

|   |                    |
|---|--------------------|
| D | Disturbed Sample   |
| N | No Sample Recovery |

GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.

PROJECT:

APN: 0463-231-06  
Apple Valley, California

## Log of Boring

B-6

Longitude:  
Latitude:  
Elevation:

| Project No. 22160-01                     |      |        |             |               |        | Location: See Plate 1    | Borehole Logged by: RM                                                                              |  |
|------------------------------------------|------|--------|-------------|---------------|--------|--------------------------|-----------------------------------------------------------------------------------------------------|--|
| Excavating Co. / Rig: GeoMat / CME-45    |      |        |             |               |        | Date Started: 5/24/2022  | Depth to Groundwater: N/A ft                                                                        |  |
| Method: Hollow-Stem Auger                |      |        |             |               |        | Date Finished: 5/24/2022 | Depth to Bedrock: N/A ft                                                                            |  |
| Hammer Weight / Drop: 140 lbs./30-inches |      |        |             |               |        | Hammer Type: Automatic   | Total Depth of Borehole: 20 ft                                                                      |  |
| SAMPLES                                  |      |        |             |               |        | LABORATORY TEST DATA     |                                                                                                     |  |
| Depth (ft)                               | Type | Sample | Blows / 6"  | SPT "N" Value | Symbol | Classification (USCS)    | MATERIAL DESCRIPTION                                                                                |  |
| 0                                        | B    |        |             |               |        |                          | SILTY SAND                                                                                          |  |
|                                          | R    |        | 40<br>50/4" | >50           |        |                          | orange-brown silty fine to coarse grained sand<br>dry, very dense, cemented, moderate caliche veins |  |
| 5                                        |      |        |             |               |        |                          |                                                                                                     |  |
| 10                                       | S    |        | 30<br>50/6" | >50           |        |                          |                                                                                                     |  |
| 15                                       | S    |        | 42<br>50/5" | >50           |        |                          |                                                                                                     |  |
| 20                                       | S    |        | 45<br>50/5" | >50           |        |                          | TD = 20'                                                                                            |  |
| 25                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 30                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 35                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 40                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 45                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 50                                       |      |        |             |               |        |                          |                                                                                                     |  |

## LOG LEGEND

|                   |              |
|-------------------|--------------|
| Bedrock/Formation | Silty Sands  |
| Gravels           | Silts        |
| Clean Sands       | Clayey Sands |
|                   | Clays        |

|                              |                                           |
|------------------------------|-------------------------------------------|
| Bulk "Grab" Sample (B)       | Groundwater ( Groundwater (During Drillin |
| Modified California Ring (R) | Groundwater ( Groundwater (Stabilized)    |
| Standard Penetration (S)     | Disturbed Sample                          |
| Modified Dames & Moore (D)   | No Sample Recovery                        |
| N                            |                                           |

|                                           |
|-------------------------------------------|
| Groundwater ( Groundwater (During Drillin |
| Groundwater ( Groundwater (Stabilized)    |
| Disturbed Sample                          |
| No Sample Recovery                        |
|                                           |

GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.

PROJECT:

APN: 0463-231-06  
Apple Valley, California

## Log of Boring

B-7

Longitude:  
Latitude:  
Elevation:

| Project No. 22160-01                     |      |        |             |               |        | Location: See Plate 1    | Borehole Logged by: RM                                                                              |  |
|------------------------------------------|------|--------|-------------|---------------|--------|--------------------------|-----------------------------------------------------------------------------------------------------|--|
| Excavating Co. / Rig: GeoMat / CME-45    |      |        |             |               |        | Date Started: 5/24/2022  | Depth to Groundwater: N/A ft                                                                        |  |
| Method: Hollow-Stem Auger                |      |        |             |               |        | Date Finished: 5/24/2022 | Depth to Bedrock: N/A ft                                                                            |  |
| Hammer Weight / Drop: 140 lbs./30-inches |      |        |             |               |        | Hammer Type: Automatic   | Total Depth of Borehole: 20 ft                                                                      |  |
| SAMPLES                                  |      |        |             |               |        | LABORATORY TEST DATA     |                                                                                                     |  |
| Depth (ft)                               | Type | Sample | Blows / 6"  | SPT "N" Value | Symbol | Classification (USCS)    | MATERIAL DESCRIPTION                                                                                |  |
| 0                                        | B    |        |             |               |        |                          | SILTY SAND                                                                                          |  |
|                                          | R    |        | 36<br>50/6" | >50           |        |                          | orange-brown silty fine to coarse grained sand<br>dry, very dense, cemented, moderate caliche veins |  |
| 5                                        |      |        |             |               |        |                          |                                                                                                     |  |
| 10                                       | S    |        | 50/6"       | >50           |        |                          |                                                                                                     |  |
| 15                                       | S    |        | 24<br>50/6" | >50           |        |                          |                                                                                                     |  |
| 20                                       | S    |        | 50/6"       | >50           |        |                          | TD = 20'                                                                                            |  |
| 25                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 30                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 35                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 40                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 45                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 50                                       |      |        |             |               |        |                          |                                                                                                     |  |

## LOG LEGEND

|   |                   |
|---|-------------------|
| ■ | Bedrock/Formation |
| ■ | Gravels           |
| ■ | Clean Sands       |
| ■ | Silts             |
| ■ | Clayey Sands      |
| ■ | Clays             |

Silty Sands

|   |                              |
|---|------------------------------|
| ■ | Modified California Ring (R) |
| ■ | Standard Penetration (S)     |
| ■ | Modified Dames & Moore (D)   |
| ■ | No Sample Recovery           |

Bulk "Grab" Sample (B)

|   |                    |
|---|--------------------|
| ■ | Disturbed Sample   |
| ■ | No Sample Recovery |

Groundwater (

Groundwater (During Drilling

Groundwater ( Groundwater (Stabilized)

D

Disturbed Sample

N

No Sample Recovery

GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.

PROJECT: APN: 0463-231-06  
Apple Valley, California

# Log of Boring

# B-8

Longitude:  
Latitude:  
Elevation:

| Project No. 22160-01                     |      |        |            |               |        | Location: See Plate 1    | Borehole Logged by: RM                                                                                                   |  |  |                      |                   |                   |                                                          |              |               |              |
|------------------------------------------|------|--------|------------|---------------|--------|--------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|----------------------|-------------------|-------------------|----------------------------------------------------------|--------------|---------------|--------------|
| Excavating Co. / Rig: GeoMat / CME-45    |      |        |            |               |        | Date Started: 5/24/2022  | Depth to Groundwater: N/A ft                                                                                             |  |  |                      |                   |                   |                                                          |              |               |              |
| Method: Hollow-Stem Auger                |      |        |            |               |        | Date Finished: 5/24/2022 | Depth to Bedrock: N/A ft                                                                                                 |  |  |                      |                   |                   |                                                          |              |               |              |
| Hammer Weight / Drop: 140 lbs./30-inches |      |        |            |               |        | Hammer Type: Automatic   | Total Depth of Borehole: 15 ft                                                                                           |  |  |                      |                   |                   |                                                          |              |               |              |
| SAMPLES                                  |      |        |            |               |        | LABORATORY TEST DATA     |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |
| Depth (ft)                               | Type | Sample | Blows / 6" | SPT "N" Value | Symbol | Classification (USCS)    | MATERIAL DESCRIPTION                                                                                                     |  |  | Moisture Content (%) | Dry Density (pcf) | Fines Content (%) | Unconfined Compressive Strength by Pocket Pen., qu (tsf) | Liquid Limit | Plastic Limit | Plast. Index |
| 5                                        | B    |        |            |               |        |                          | <b>SILTY SAND</b><br>orange-brown silty fine to coarse grained sand<br>dry, very dense, cemented, moderate caliche veins |  |  |                      |                   |                   |                                                          |              |               |              |
| 5                                        | R    |        | 50/6"      | >50           |        |                          | sample disturbed                                                                                                         |  |  |                      |                   |                   |                                                          |              |               |              |
| 10                                       | S    |        | 50/7"      | >50           |        |                          |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |
| 15                                       | S    |        | 52/6"      | >50           |        |                          | TD = 15'                                                                                                                 |  |  |                      |                   |                   |                                                          |              |               |              |
| 20                                       |      |        |            |               |        |                          |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |
| 25                                       |      |        |            |               |        |                          |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |
| 30                                       |      |        |            |               |        |                          |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |
| 35                                       |      |        |            |               |        |                          |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |
| 40                                       |      |        |            |               |        |                          |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |
| 45                                       |      |        |            |               |        |                          |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |
| 50                                       |      |        |            |               |        |                          |                                                                                                                          |  |  |                      |                   |                   |                                                          |              |               |              |

#### LOG LEGEND

|                   |              |
|-------------------|--------------|
| Bedrock/Formation | Silty Sands  |
| Gravels           | Silts        |
| Clean Sands       | Clayey Sands |
|                   | Clays        |

Silty Sands

Silts

Clayey Sands

Clays

Bulk "Grab" Sample (B)

Modified California Ring (R)

Standard Penetration (S)

Modified Dames & Moore (D)

Groundwater ( During Drillin

Groundwater ( Groundwater (Stabilized)

Disturbed Sample

No Sample Recovery



GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.

PROJECT:

APN: 0463-231-06  
Apple Valley, California

## Log of Boring

B-9

Longitude:  
Latitude:  
Elevation:

| Project No. 22160-01                     |      |        |             |               |        | Location: See Plate 1    | Borehole Logged by: RM                                                                              |  |
|------------------------------------------|------|--------|-------------|---------------|--------|--------------------------|-----------------------------------------------------------------------------------------------------|--|
| Excavating Co. / Rig: GeoMat / CME-45    |      |        |             |               |        | Date Started: 5/24/2022  | Depth to Groundwater: N/A ft                                                                        |  |
| Method: Hollow-Stem Auger                |      |        |             |               |        | Date Finished: 5/24/2022 | Depth to Bedrock: N/A ft                                                                            |  |
| Hammer Weight / Drop: 140 lbs./30-inches |      |        |             |               |        | Hammer Type: Automatic   | Total Depth of Borehole: 15 ft                                                                      |  |
| SAMPLES                                  |      |        |             |               |        | LABORATORY TEST DATA     |                                                                                                     |  |
| Depth (ft)                               | Type | Sample | Blows / 6"  | SPT "N" Value | Symbol | Classification (USCS)    | MATERIAL DESCRIPTION                                                                                |  |
| 0                                        | B    |        |             |               |        |                          | SILTY SAND                                                                                          |  |
| 0                                        | R    |        | 46/6"       | >50           |        |                          | orange-brown silty fine to coarse grained sand<br>dry, very dense, cemented, moderate caliche veins |  |
| 5                                        |      |        |             |               |        |                          |                                                                                                     |  |
| 10                                       | S    |        | 38<br>50/5" | >50           |        |                          |                                                                                                     |  |
| 15                                       | S    |        | 50/6"       | >50           |        |                          | TD = 15'                                                                                            |  |
| 20                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 25                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 30                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 35                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 40                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 45                                       |      |        |             |               |        |                          |                                                                                                     |  |
| 50                                       |      |        |             |               |        |                          |                                                                                                     |  |

## LOG LEGEND

|   |                   |
|---|-------------------|
| ■ | Bedrock/Formation |
| ■ | Gravels           |
| ■ | Clean Sands       |
| ■ | Silts             |
| ■ | Clayey Sands      |
| ■ | Clays             |

Silty Sands

|   |                              |
|---|------------------------------|
| ■ | Modified California Ring (R) |
| ■ | Standard Penetration (S)     |
| ■ | Modified Dames & Moore (D)   |
| ■ | No Sample Recovery           |

Bulk "Grab" Sample (B)

|   |                    |
|---|--------------------|
| ■ | Disturbed Sample   |
| ■ | No Sample Recovery |

▽

Groundwater ( Groundwater (During Drillin

▼

Groundwater ( Groundwater (Stabilized)

D

Disturbed Sample

N

No Sample Recovery

GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.

PROJECT:

APN: 0463-231-06  
Apple Valley, California

## Log of Boring

B-10

Longitude:  
Latitude:  
Elevation:

| Project No. 22160-01                     |      |        |            |               |        | Location: See Plate 1    | Borehole Logged by: RM                                                                                       |  |
|------------------------------------------|------|--------|------------|---------------|--------|--------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Excavating Co. / Rig: GeoMat / CME-45    |      |        |            |               |        | Date Started: 5/29/2022  | Depth to Groundwater: N/A ft                                                                                 |  |
| Method: Hollow-Stem Auger                |      |        |            |               |        | Date Finished: 5/29/2022 | Depth to Bedrock: N/A ft                                                                                     |  |
| Hammer Weight / Drop: 140 lbs./30-inches |      |        |            |               |        | Hammer Type: Automatic   | Total Depth of Borehole: 15 ft                                                                               |  |
| SAMPLES                                  |      |        |            |               |        | LABORATORY TEST DATA     |                                                                                                              |  |
| Depth (ft)                               | Type | Sample | Blows / 6" | SPT "N" Value | Symbol | Classification (USCS)    | MATERIAL DESCRIPTION                                                                                         |  |
| 0                                        | B    |        |            |               |        |                          | SILTY SAND                                                                                                   |  |
| 0                                        | R    |        | 50/4"      | 39            |        |                          | orange-brown silty fine to coarse grained sand<br>dry, dense to very dense, cemented, moderate caliche veins |  |
| 5                                        |      |        |            |               |        |                          | (sample disturbed)                                                                                           |  |
| 10                                       | S    |        | 50/2"      | >50           |        |                          |                                                                                                              |  |
| 15                                       | S    |        | 50/3"      | >50           |        |                          |                                                                                                              |  |
| 20                                       |      |        |            |               |        |                          |                                                                                                              |  |
| 25                                       |      |        |            |               |        |                          |                                                                                                              |  |
| 30                                       |      |        |            |               |        |                          |                                                                                                              |  |
| 35                                       |      |        |            |               |        |                          |                                                                                                              |  |
| 40                                       |      |        |            |               |        |                          |                                                                                                              |  |
| 45                                       |      |        |            |               |        |                          |                                                                                                              |  |
| 50                                       |      |        |            |               |        |                          |                                                                                                              |  |

## LOG LEGEND

|   |                   |
|---|-------------------|
| ■ | Bedrock/Formation |
| ■ | Gravels           |
| ■ | Clean Sands       |
| ■ | Silts             |
| ■ | Clayey Sands      |
| ■ | Clays             |

Silty Sands

|   |                              |
|---|------------------------------|
| ■ | Modified California Ring (R) |
| ■ | Standard Penetration (S)     |
| ■ | Modified Dames & Moore (D)   |
| ■ | No Sample Recovery           |

Bulk "Grab" Sample (B)

|   |                    |
|---|--------------------|
| ■ | Disturbed Sample   |
| ■ | No Sample Recovery |

Groundwater (

Groundwater (During Drilling

|   |                           |
|---|---------------------------|
| ▼ | Groundwater (             |
| ▼ | Groundwater ( Stabilized) |

Groundwater ( Groundwater (Stabilized)

D Disturbed Sample

N No Sample Recovery

GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.

| PROJECT: APN: 0463-231-06<br>Apple Valley, California |      | Log of Boring B-11       |                   | Longitude:<br>Latitude:<br>Elevation: |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
|-------------------------------------------------------|------|--------------------------|-------------------|---------------------------------------|--------|-------------------------------------------|----------------------|-------------------|-------------------|----------------------------------------------------------|--------------|---------------|--------------|--|
| Project No. 22160-01                                  |      | Location: See Plate 1    |                   | Borehole Logged by: RM                |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| Excavating Co. / Rig: GeoMat / CME-45                 |      | Date Started: 5/29/2022  |                   | Depth to Groundwater: N/A ft          |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| Method: Hollow-Stem Auger                             |      | Date Finished: 5/29/2022 |                   | Depth to Bedrock: N/A ft              |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| Hammer Weight / Drop: 140 lbs./30-inches              |      | Hammer Type: Automatic   |                   | Total Depth of Borehole: 50 ft        |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| SAMPLES                                               |      | MATERIAL DESCRIPTION     |                   |                                       |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| Depth (ft)                                            | Type | Sample                   | Blows / 6"        | SPT "N" Value                         | Symbol | Classification (USCS)                     | Moisture Content (%) | Dry Density (pcf) | Fines Content (%) | Unconfined Compressive Strength by Pocket Pen., qu (tsf) | Liquid Limit | Plastic Limit | Plast. Index |  |
| 0                                                     | B    |                          |                   |                                       |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 5                                                     | R    |                          | 25<br>40          | 39                                    |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 10                                                    | S    |                          | 50/5"             | >50                                   |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 15                                                    | S    |                          | 10<br>32<br>31    | >50                                   |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 20                                                    | S    |                          | 27<br>32<br>40    | >50                                   |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 25                                                    | S    |                          | 22<br>43<br>50/3" | >50                                   |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 30                                                    | S    |                          | 14<br>13<br>30    | 43                                    |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 35                                                    | S    |                          | 50/5"             | >50                                   |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 40                                                    | S    |                          | 50/6"             | >50                                   |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 45                                                    | S    |                          | 50/6"             | >50                                   |        |                                           |                      |                   |                   |                                                          |              |               |              |  |
| 50                                                    | S    |                          | 50/2"             | >50                                   |        |                                           | TD = 50'             |                   |                   |                                                          |              |               |              |  |
| LOG LEGEND                                            |      | Silty Sands              |                   | Bulk "Grab" Sample (B)                |        | Groundwater ( Groundwater (During Drillin |                      |                   |                   |                                                          |              |               |              |  |
| Bedrock/Formation                                     |      | Silts                    |                   | Modified California Ring (R)          |        | Groundwater ( Groundwater (Stabilized)    |                      |                   |                   |                                                          |              |               |              |  |
| Gravels                                               |      | Clayey Sands             |                   | Standard Penetration (S)              |        | D                                         | Disturbed Sample     |                   |                   |                                                          |              |               |              |  |
| Clean Sands                                           |      | Clays                    |                   | Modified Dames & Moore (D)            |        | N                                         | No Sample Recovery   |                   |                   |                                                          |              |               |              |  |

This log is part of the report prepared by GeoMat Testing Laboratories, Inc. for this project and should be read together with the report. This summary applies only at the location of the exploration and at the time of drilling or excavation. Subsurface conditions may differ at other locations and may change at this location with time. Data presented are a simplification of actual conditions encountered.



GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504

## APPENDIX C

### LABORATORY TESTING

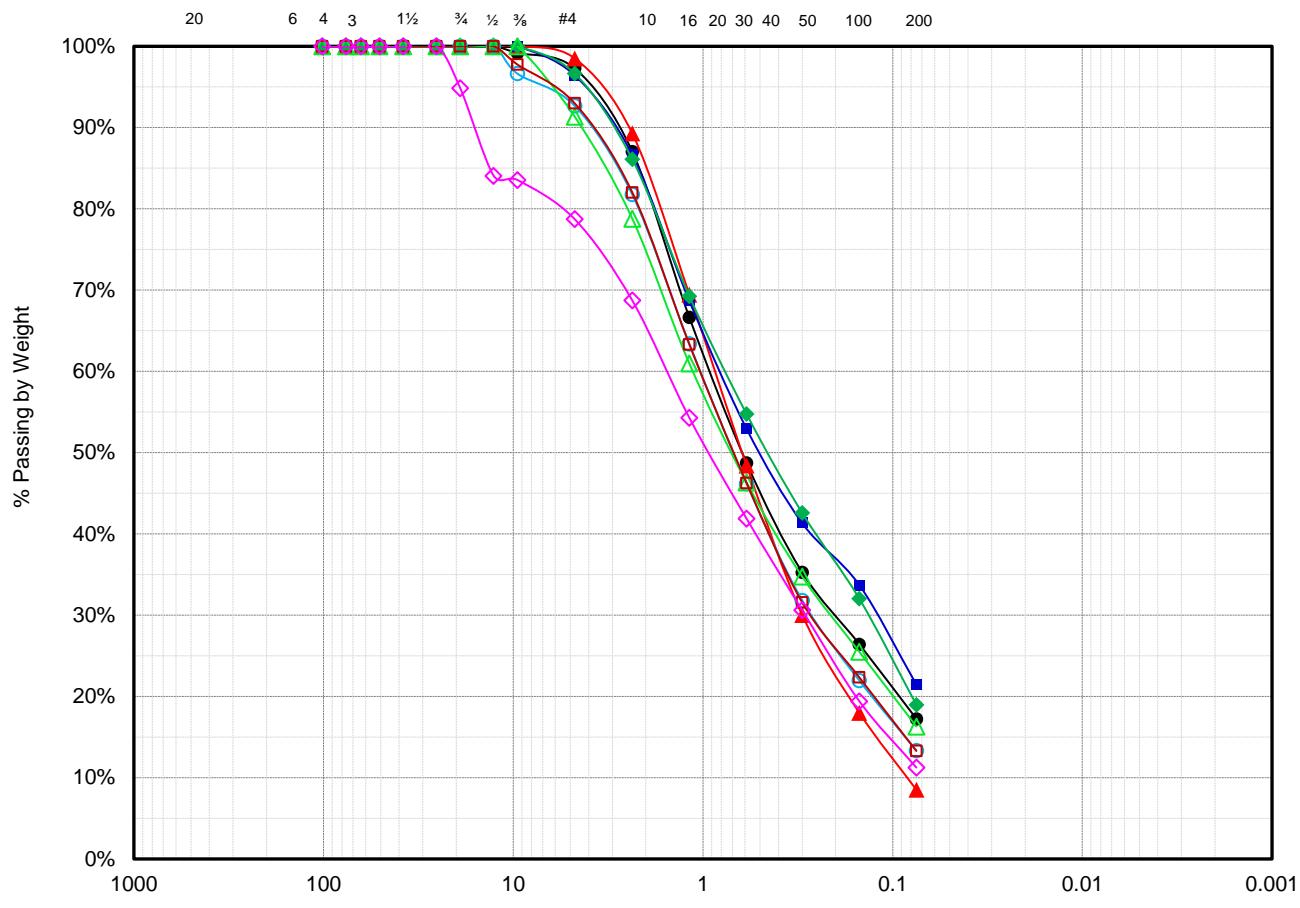


**GeoMat Testing Laboratories, Inc.**  
Geotechnical Engineering  
Engineering Geology  
Material Testing

**Inland Empire**  
9980 Indiana Ave, Suite 14  
Riverside, California 92503  
Office (951) 688-5400

**Los Angeles**  
5714 W. 96<sup>th</sup> Street  
Los Angeles, California 90045  
Office (310) 337-9400

[geomatlabs.com](http://geomatlabs.com)


# GRAIN SIZE DISTRIBUTION

(ASTM C136)

U.S. Standard Sieve Opening in Inches

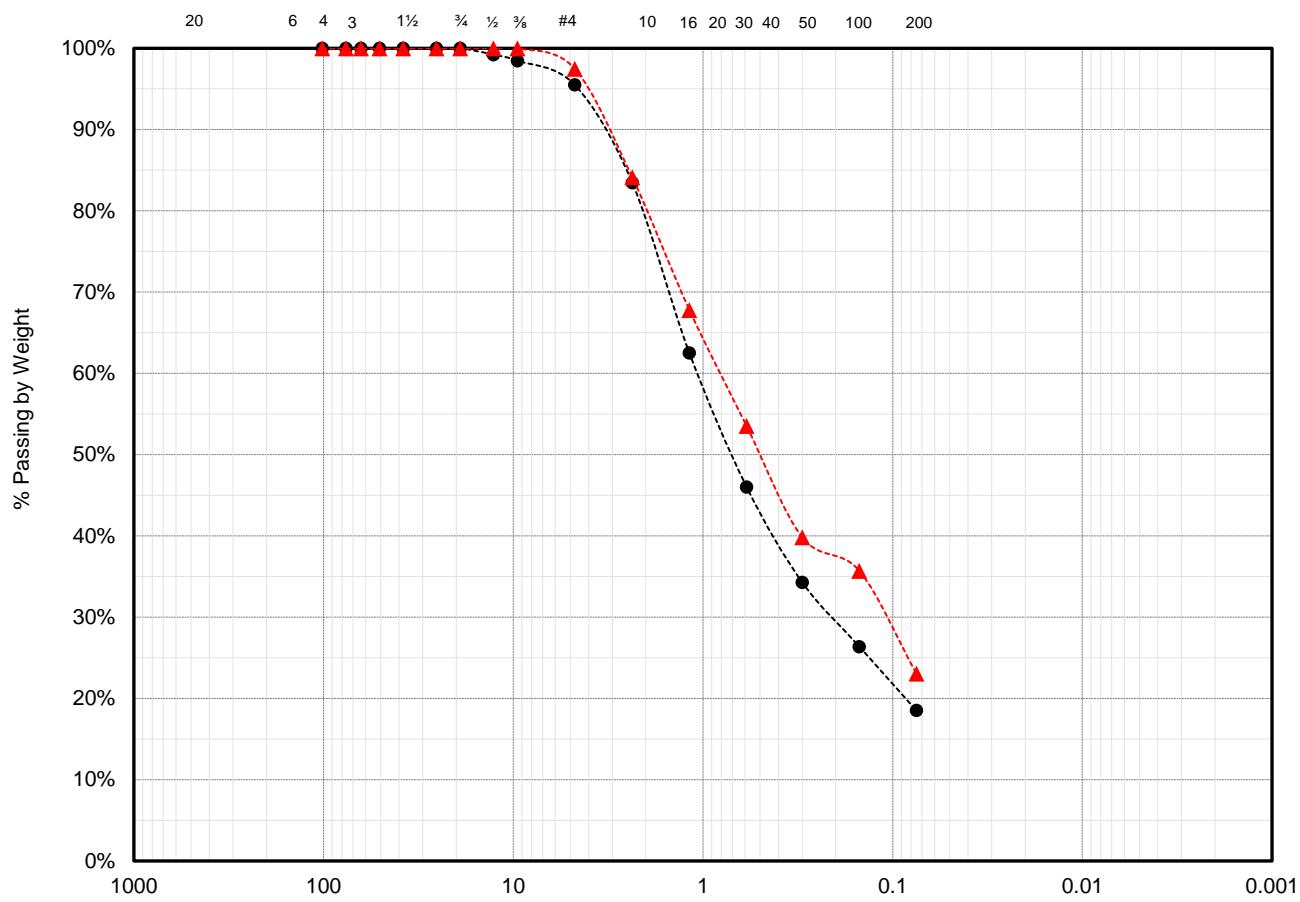
U.S. Standard Sieve Numbers

Hydrometer Results



Grain Size in Millimeters

| Cobbles | Gravels |      | Sands  |                                       |      | Silts | Clays |      |      |       |       |
|---------|---------|------|--------|---------------------------------------|------|-------|-------|------|------|-------|-------|
|         | Coarse  | Fine | Coarse | Medium                                | Fine |       |       |      |      |       |       |
| ●       | B-1     | 5'   | SM     | Silty Sand                            | 4.0  | 17    | 0.04  | 0.21 | 0.96 | 22.09 | 1.06  |
| ▲       | B-3     | 5'   | SW-SM  | Well-Graded Sand with Silt            | 2.9  | 9     | 0.09  | 0.30 | 0.91 | 10.55 | 1.13  |
| ■       | B-7     | 5'   | SM     | Silty Sand                            | 2.7  | 21    | 0.03  | 0.13 | 0.85 | 24.45 | 0.54  |
| ◆       | B-9     | 5'   | SM     | Silty Sand                            | 3.1  | 19    | 0.04  | 0.14 | 0.80 | 0.60  | 20.31 |
| ○       | B-3     | 20'  | SM     | Silty Sand                            | 8.7  | 13    | 0.06  | 0.27 | 1.06 | 1.24  | 18.93 |
| △       | B-1     | 10'  | SM     | Silty Sand                            | 4.7  | 16    | 0.05  | 0.22 | 1.14 | 0.95  | 24.81 |
| □       | B-6     | 20'  | SM     | Silty Sand                            | 10.7 | 13    | 0.06  | 0.27 | 1.06 | 1.25  | 18.87 |
| ◇       | B-4     | 10'  | SP-SM  | Poorly-Graded Sand with Silt & Gravel | 4.9  | 11    | 0.07  | 0.29 | 1.65 | 0.78  | 24.70 |


# GRAIN SIZE DISTRIBUTION

(ASTM C136)

U.S. Standard Sieve Opening in Inches

U.S. Standard Sieve Numbers

Hydrometer Results



Grain Size in Millimeters

| Cobbles | Gravels |      | Sands  |        |      | Silts | Clays |
|---------|---------|------|--------|--------|------|-------|-------|
|         | Coarse  | Fine | Coarse | Medium | Fine |       |       |

| Symbol | Location | Depth | USCS | Classification | Moisture (%) | Fines (%) | D10  | D30  | D60  | Cc   | Cu   |
|--------|----------|-------|------|----------------|--------------|-----------|------|------|------|------|------|
| ●      | P-1      | 5'    | SM   | Silty Sand     | 2.7          | 19        | 0.04 | 0.22 | 1.09 | 26.9 | 1.08 |
| ▲      | B-11     | 30'   | SM   | Silty Sand     | 8.8          | 23        | 0.03 | 0.12 | 0.86 | 26.3 | 0.48 |



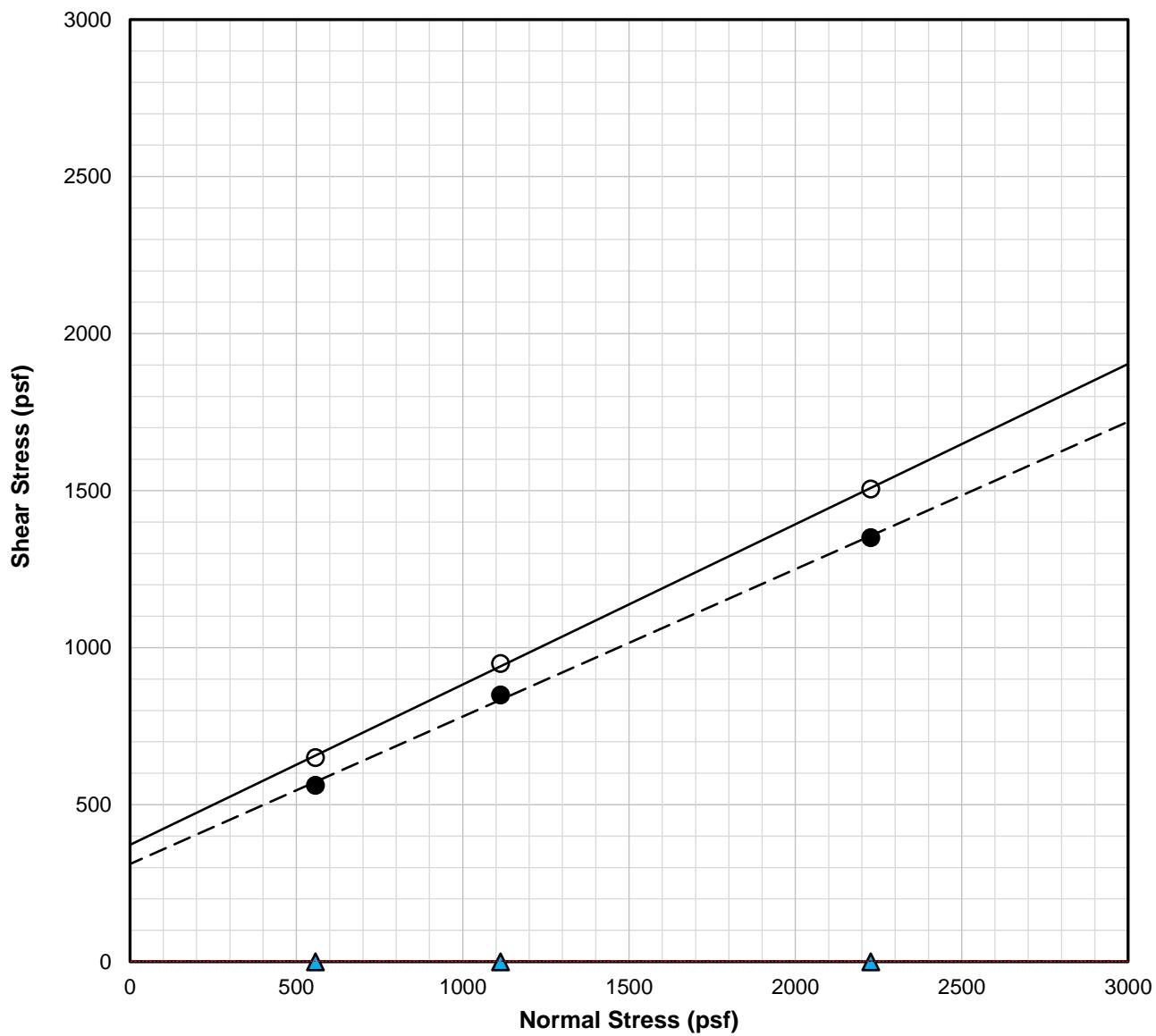
GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92504  
geomatlabs.com

PRELIMINARY SOIL INVESTIGATION REPORT

Proposed Cold Storgae Building

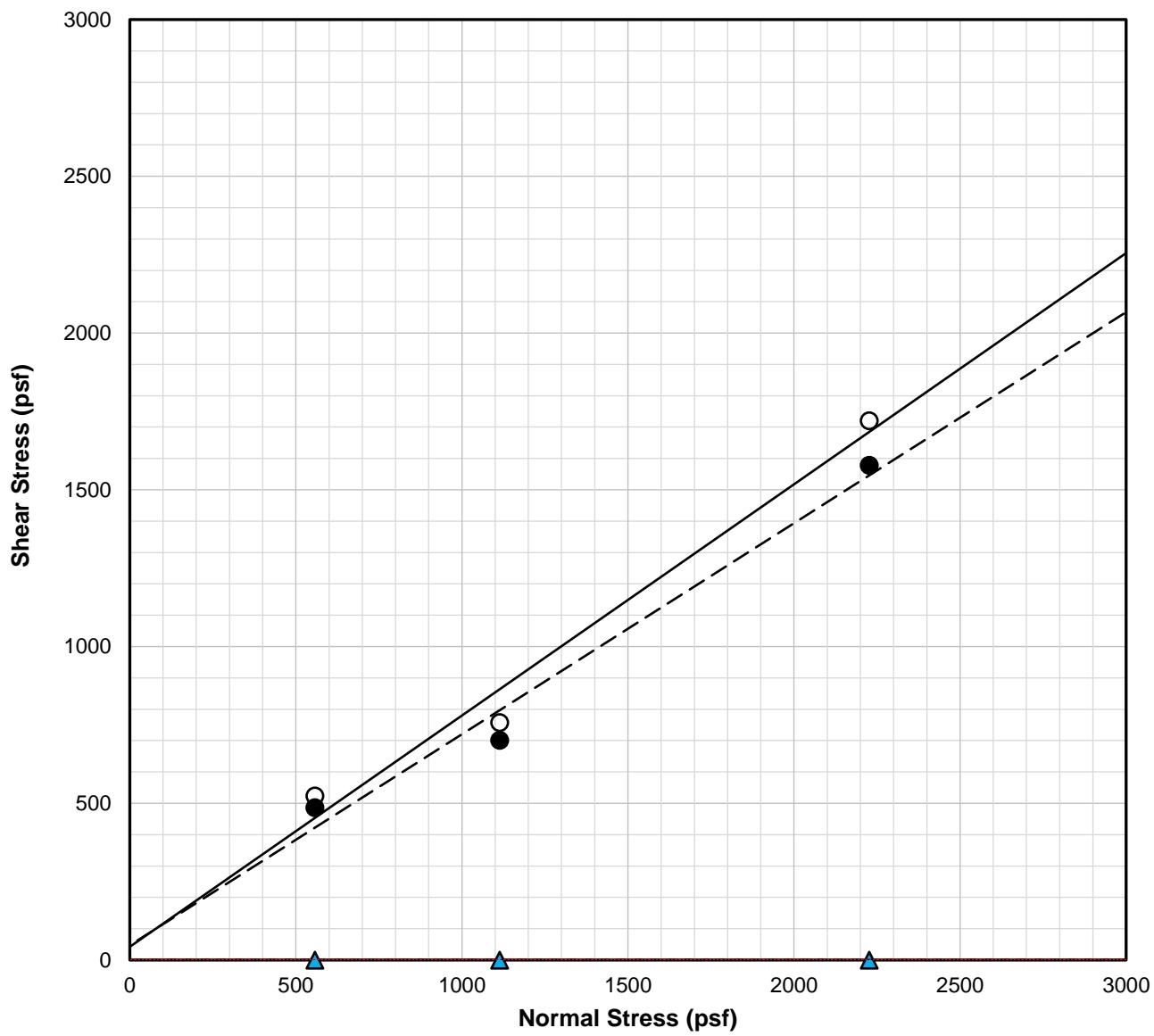
APN 0463-231-06

Apple Valley, California


Project No.: 22160-01

Date Tested: 5/23/2022

Tested by: HMN

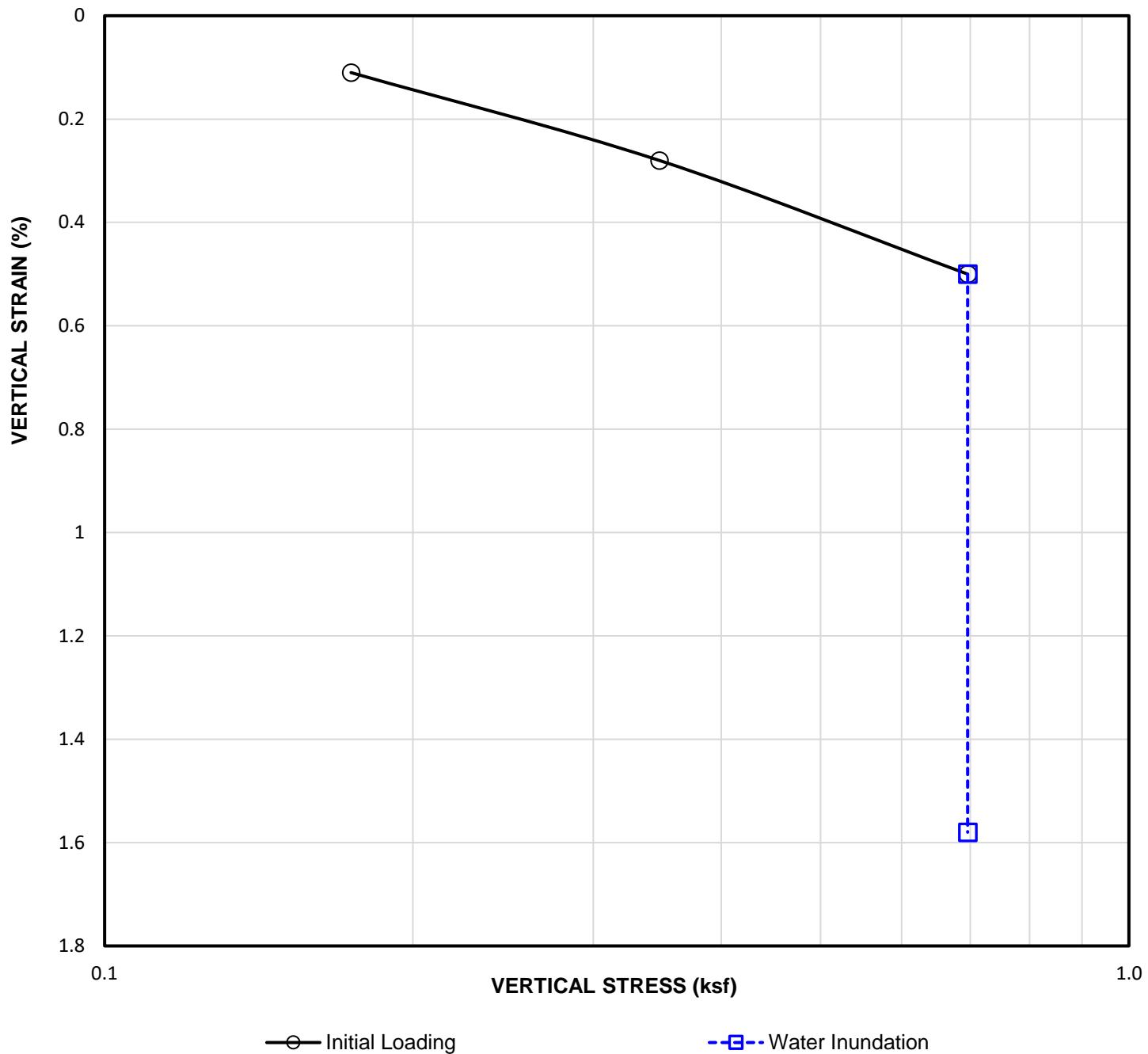

Exhibit: Appendix C

## DIRECT SHEAR TEST RESULTS



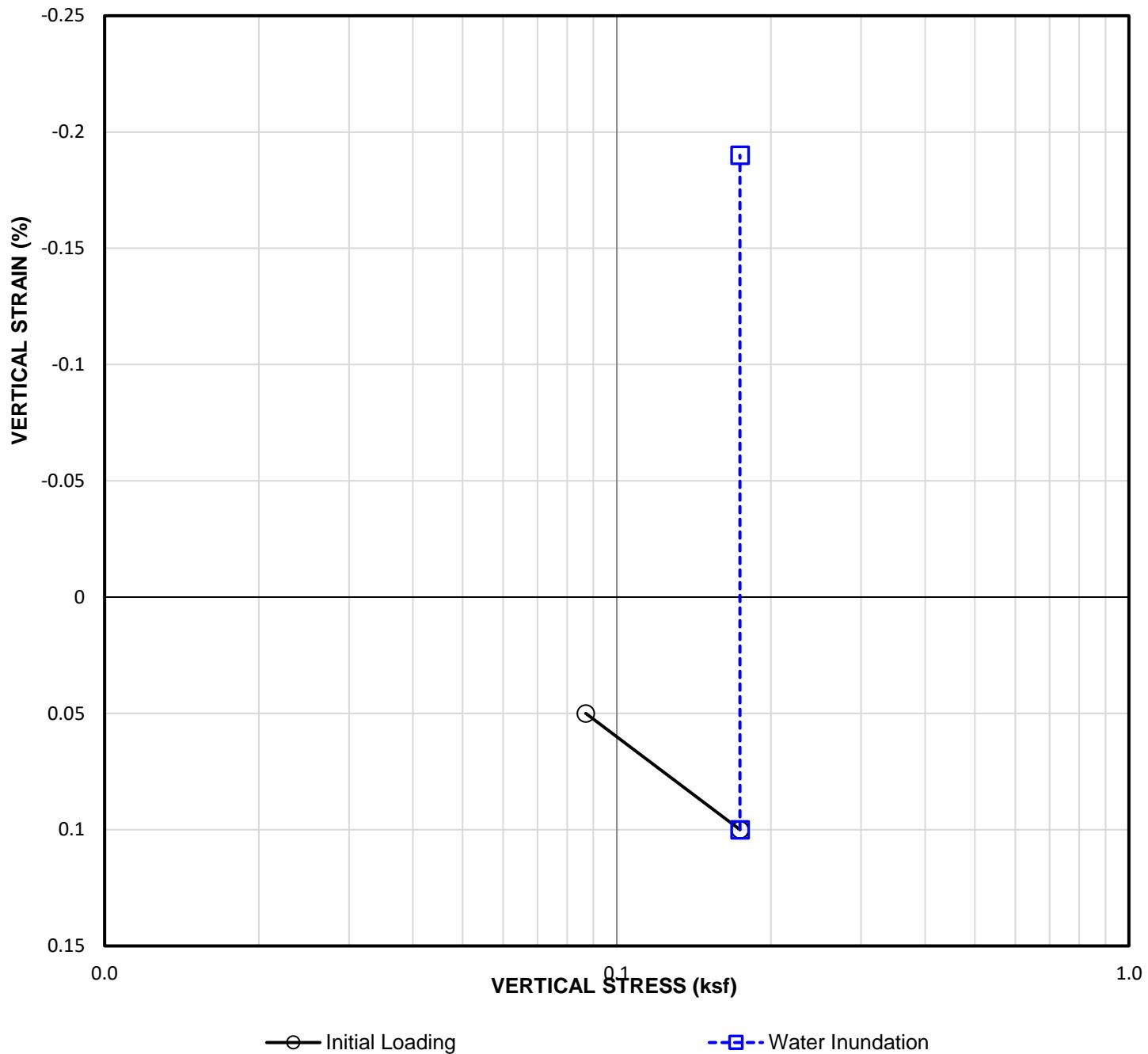
| Sample                                                                                                                                                                         | Symbol | Description            | Soil Type [USCS]      | Shear Strength | Friction Angle $\phi$ [degrees] | Cohesion c [psf] |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|-----------------------|----------------|---------------------------------|------------------|--|--|--|--|
| B-1 @ 5'                                                                                                                                                                       | —○—    | Silty Sand             | SM                    | Peak           | 27                              | 372              |  |  |  |  |
| B-1 @ 5'                                                                                                                                                                       | —●—    | Silty Sand             | SM                    | Ultimate       | 25                              | 311              |  |  |  |  |
| B-1 @ 5'                                                                                                                                                                       | —▲—    | Silty Sand             | SM                    | *Residual      | N/A                             | N/A              |  |  |  |  |
| Sample Moisture [%]                                                                                                                                                            |        | Saturated Moisture [%] | Dry Unit Weight [pcf] |                |                                 |                  |  |  |  |  |
| 7.1                                                                                                                                                                            |        | 17.8                   | 107.4                 |                |                                 |                  |  |  |  |  |
| Performed in General Accordance with ASTM D-3080                                                                                                                               |        |                        |                       |                |                                 |                  |  |  |  |  |
| *Residual shear strength results were determined from the lowest of the residual shears shown above.<br>(Individual residual shear results plotted with red dashed line above) |        |                        |                       |                |                                 |                  |  |  |  |  |

## DIRECT SHEAR TEST RESULTS

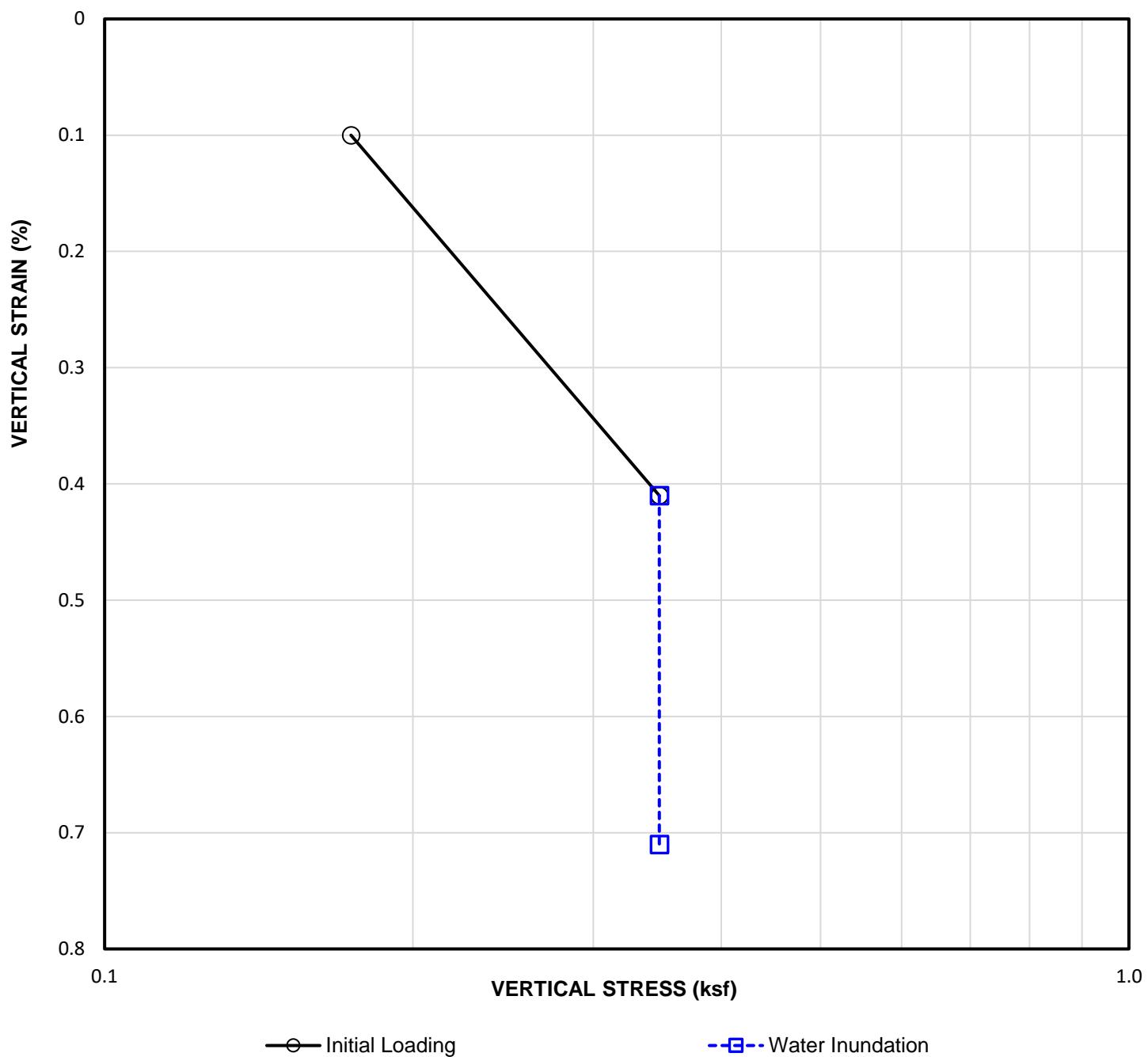



| Sample                                                                                                                                                                         | Symbol                 | Description | Soil Type [USCS]      | Shear Strength | Friction Angle $\phi$ [degrees] | Cohesion c [psf] |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-----------------------|----------------|---------------------------------|------------------|--|--|--|--|--|--|
| B-6 @ 5'                                                                                                                                                                       | —○—                    | Silty Sand  | SM                    | Peak           | 36                              | 42               |  |  |  |  |  |  |
| B-6 @ 5'                                                                                                                                                                       | —●—                    | Silty Sand  | SM                    | Ultimate       | 34                              | 47               |  |  |  |  |  |  |
| B-6 @ 5'                                                                                                                                                                       | ---▲---                | Silty Sand  | SM                    | *Residual      | N/A                             | N/A              |  |  |  |  |  |  |
| Sample Moisture [%]                                                                                                                                                            | Saturated Moisture [%] |             | Dry Unit Weight [pcf] |                |                                 |                  |  |  |  |  |  |  |
| 5.5                                                                                                                                                                            | 17.3                   |             | 108.5                 |                |                                 |                  |  |  |  |  |  |  |
| Performed in General Accordance with ASTM D-3080                                                                                                                               |                        |             |                       |                |                                 |                  |  |  |  |  |  |  |
| *Residual shear strength results were determined from the lowest of the residual shears shown above.<br>(Individual residual shear results plotted with red dashed line above) |                        |             |                       |                |                                 |                  |  |  |  |  |  |  |




GeoMat Testing Laboratories, Inc.  
9980 Indiana Avenue, Suite 14  
Riverside, California 92503

## SWELL/COLLAPSE TEST REPORT

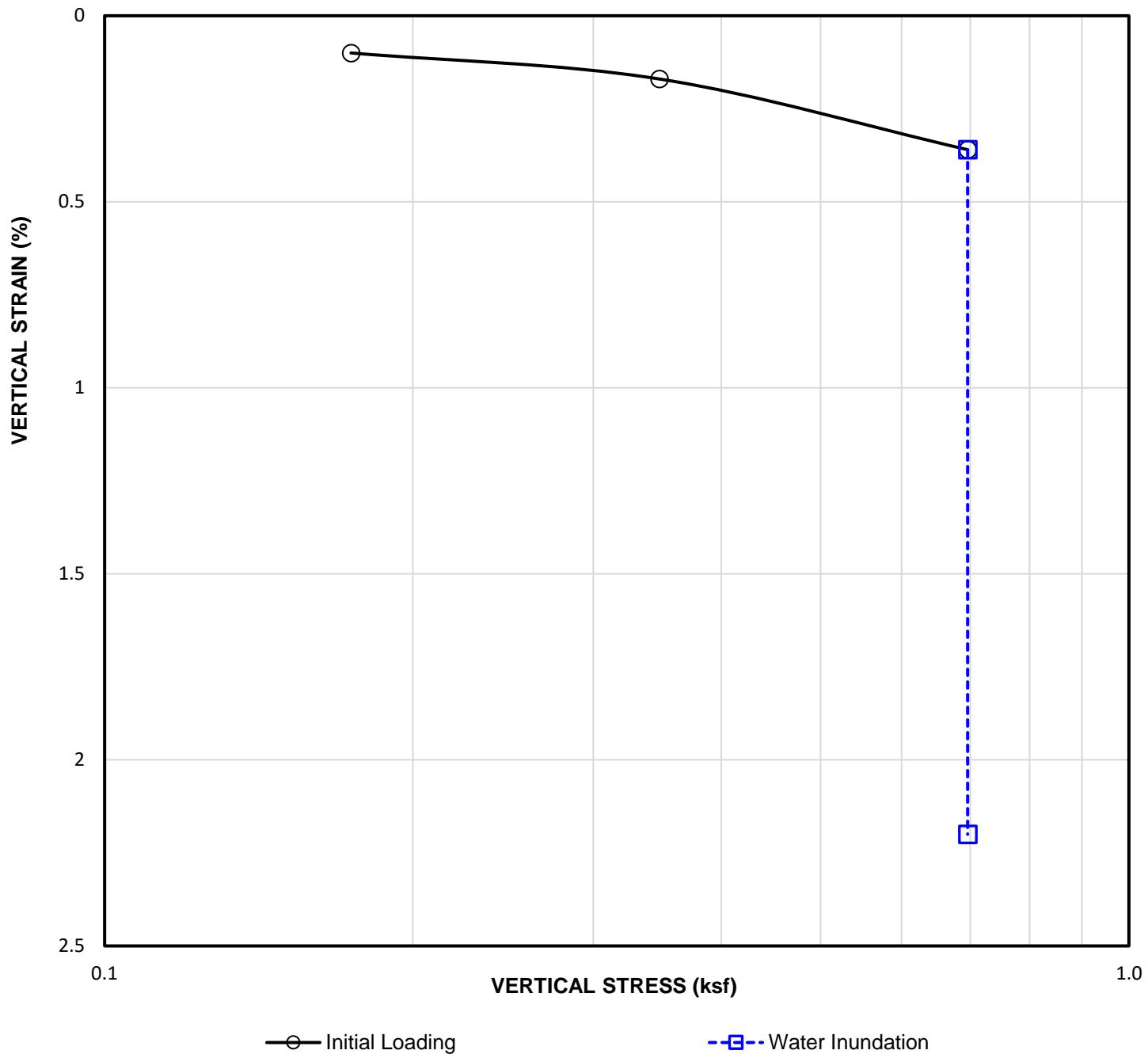



| Sampler Type: California Ring Sampler |                 |        | Condition: Before Test                               |  |  | After Test                    |  |  |  |  |  |  |  |  |
|---------------------------------------|-----------------|--------|------------------------------------------------------|--|--|-------------------------------|--|--|--|--|--|--|--|--|
| Diameter(in): 2.41                    | Height(in): 1.0 |        | Water Content: $w_0 = 5.4\%$                         |  |  | $w_f = 16.7\%$                |  |  |  |  |  |  |  |  |
| Overburden Pressure, $P_0$ 0.3        | tsf             |        | Void Ratio: $e_0 = 0.429$                            |  |  | $e_f = 0.407$                 |  |  |  |  |  |  |  |  |
| Preconsol. Pressure, $P_c$ N/A        |                 | ksf    | Saturation: $S_0 = 33.0\%$                           |  |  | $S_f = 106.8\%$               |  |  |  |  |  |  |  |  |
| LL: --                                | PL: --          | PI: -- | Dry Density: $\gamma_d = 113.4 \text{pcf}$           |  |  | $\gamma_d = 115.4 \text{pcf}$ |  |  |  |  |  |  |  |  |
| Specific Gravity, $G_s$ 2.6           | (Assumed)       |        | <b>SWELL/COLLAPSE TEST</b><br>(ASTM D4546, Method B) |  |  |                               |  |  |  |  |  |  |  |  |
| % Collapse: 1.08 %                    | "No Problem"    |        |                                                      |  |  |                               |  |  |  |  |  |  |  |  |
| Sample Location: B-6 @ 5'             |                 |        |                                                      |  |  |                               |  |  |  |  |  |  |  |  |
| Soil Classification: SM               |                 |        |                                                      |  |  |                               |  |  |  |  |  |  |  |  |

## SWELL/COLLAPSE TEST REPORT

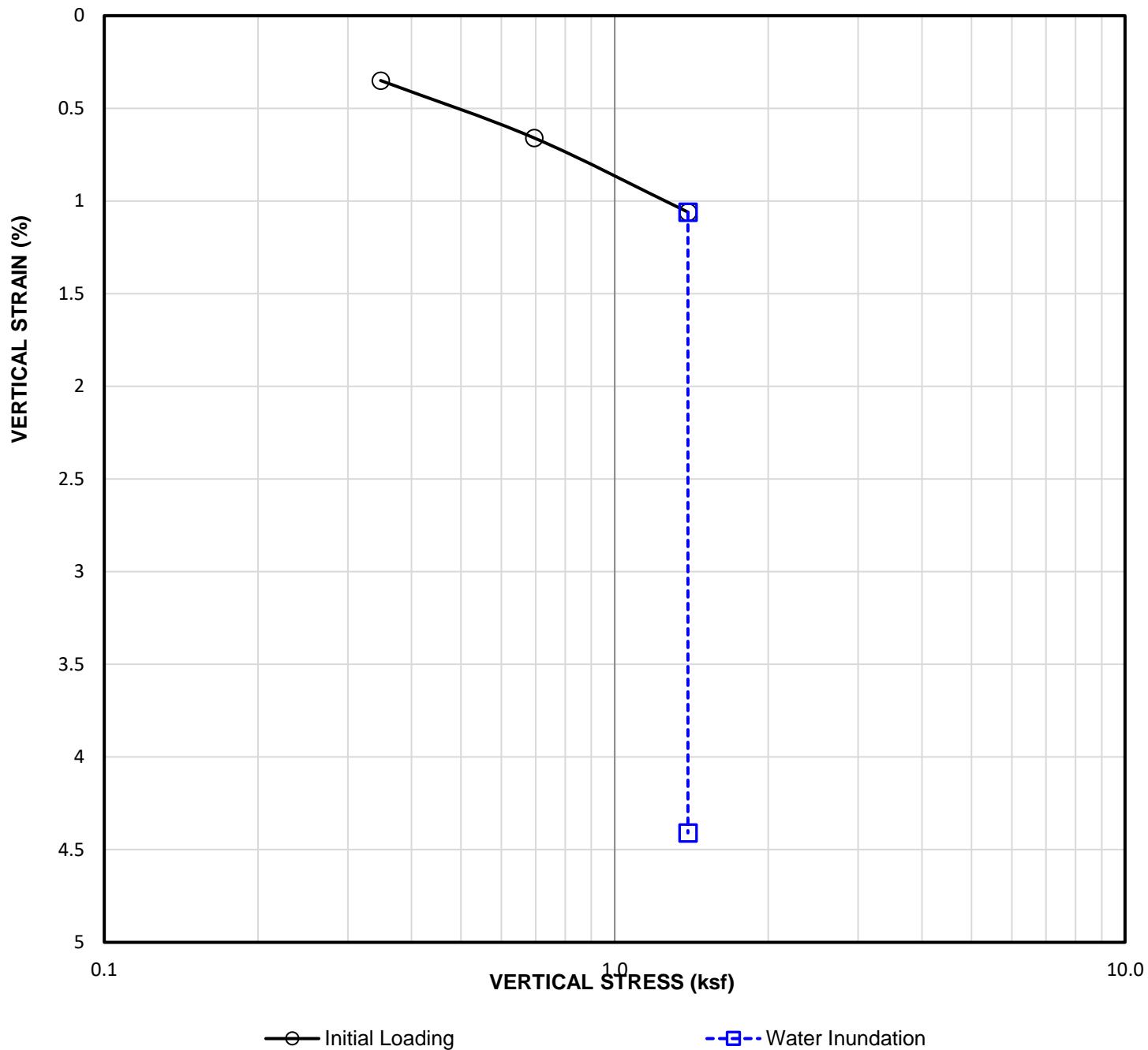


| Sampler Type: California Ring Sampler           |                 |        | Condition: Before Test                        |     |                    | After Test |  |
|-------------------------------------------------|-----------------|--------|-----------------------------------------------|-----|--------------------|------------|--|
| Diameter(in): 2.41                              | Height(in): 1.0 |        | Water Content: $w_0 = 5.4$                    | %   | $w_f = 18.5$       | %          |  |
| Overburden Pressure, $P_0$ 0.3                  | tsf             |        | Void Ratio: $e_0 = 0.466$                     |     | $e_f = 0.469$      |            |  |
| Preconsol. Pressure, $P_c$ N/A                  | ksf             |        | Saturation: $S_0 = 30.3$                      | %   | $S_f = 102.5$      | %          |  |
| LL: --                                          | PL: --          | PI: -- | Dry Density: $\gamma_d = 110.6$               | pcf | $\gamma_d = 110.5$ | pcf        |  |
| Specific Gravity, $G_s$ 2.6                     | (Assumed)       |        |                                               |     |                    |            |  |
| % Collapse: -0.29 %                             | "No Problem"    |        |                                               |     |                    |            |  |
| Sample Location: B-9 @ 5' (0.175 ksf Surcharge) |                 |        |                                               |     |                    |            |  |
| Soil Classification: SM                         |                 |        | SWELL/COLLAPSE TEST<br>(ASTM D4546, Method B) |     |                    |            |  |


**SWELL/COLLAPSE TEST REPORT**

| Sampler Type: California Ring Sampler          |                 |        | Condition: Before Test                     |  |  | After Test                    |  |
|------------------------------------------------|-----------------|--------|--------------------------------------------|--|--|-------------------------------|--|
| Diameter(in): 2.41                             | Height(in): 1.0 |        | Water Content: $w_0 = 4.8 \%$              |  |  | $w_f = 17.0 \%$               |  |
| Overburden Pressure, $P_0$ 0.3                 | tsf             |        | Void Ratio: $e_0 = 0.448$                  |  |  | $e_f = 0.438$                 |  |
| Preconsol. Pressure, $P_c$ N/A                 |                 | ksf    | Saturation: $S_0 = 28.1 \%$                |  |  | $S_f = 100.9 \%$              |  |
| LL: --                                         | PL: --          | PI: -- | Dry Density: $\gamma_d = 111.9 \text{pcf}$ |  |  | $\gamma_d = 112.9 \text{pcf}$ |  |
| Specific Gravity, $G_s$ 2.6                    | (Assumed)       |        |                                            |  |  |                               |  |
| % Collapse: 0.30 %                             | "No Problem"    |        |                                            |  |  |                               |  |
| Sample Location: B-9 @ 5' (0.35 ksf Surcharge) |                 |        |                                            |  |  |                               |  |
| Soil Classification: SM                        |                 |        |                                            |  |  |                               |  |

**SWELL/COLLAPSE TEST**  
(ASTM D4546, Method B)


**geomat**  
GeoMat Testing Laboratories, Inc.  
9980 Indiana Ave, Suite 14  
Riverside, California 92503

## SWELL/COLLAPSE TEST REPORT



| Sampler Type: California Ring Sampler         |                    |        | Condition: Before Test                      |  |  | After Test                     |  |  |
|-----------------------------------------------|--------------------|--------|---------------------------------------------|--|--|--------------------------------|--|--|
| Diameter(in): 2.41                            | Height(in): 1.0    |        | Water Content: $w_0 = 3.8 \text{ \%}$       |  |  | $w_f = 15.1 \text{ \%}$        |  |  |
| Overburden Pressure, $P_0$ 0.3                |                    | tsf    | Void Ratio: $e_0 = 0.434$                   |  |  | $e_f = 0.403$                  |  |  |
| Preconsol. Pressure, $P_c$ N/A                |                    | ksf    | Saturation: $S_0 = 22.5 \text{ \%}$         |  |  | $S_f = 97.2 \text{ \%}$        |  |  |
| LL: --                                        | PL: --             | PI: -- | Dry Density: $\gamma_d = 113.0 \text{ pcf}$ |  |  | $\gamma_d = 115.7 \text{ pcf}$ |  |  |
| Specific Gravity, $G_s$ 2.6                   | (Assumed)          |        |                                             |  |  |                                |  |  |
| % Collapse: 1.84 %                            | "Moderate Problem" |        |                                             |  |  |                                |  |  |
| Sample Location: B-9 @ 5' (0.7 ksf Surcharge) |                    |        | <b>SWELL/COLLAPSE TEST</b>                  |  |  |                                |  |  |
| Soil Classification: SM                       |                    |        | (ASTM D4546, Method B)                      |  |  |                                |  |  |

## SWELL/COLLAPSE TEST REPORT



| Sampler Type: California Ring Sampler         |                    |        | Condition: Before Test                               |  |  | After Test                     |                                                                                                                                                                                         |  |  |  |  |  |
|-----------------------------------------------|--------------------|--------|------------------------------------------------------|--|--|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Diameter(in): 2.41                            | Height(in): 1.0    |        | Water Content: $w_0 = 4.8 \%$                        |  |  | $w_f = 16.6 \%$                |                                                                                                                                                                                         |  |  |  |  |  |
| Overburden Pressure, $P_0$ 0.3                | tsf                |        | Void Ratio: $e_0 = 0.457$                            |  |  | $e_f = 0.393$                  |                                                                                                                                                                                         |  |  |  |  |  |
| Preconsol. Pressure, $P_c$ N/A                | ksf                |        | Saturation: $S_0 = 27.3 \%$                          |  |  | $S_f = 110.2 \%$               |                                                                                                                                                                                         |  |  |  |  |  |
| LL: --                                        | PL: --             | PI: -- | Dry Density: $\gamma_d = 111.3 \text{ pcf}$          |  |  | $\gamma_d = 116.5 \text{ pcf}$ |                                                                                                                                                                                         |  |  |  |  |  |
| Specific Gravity, $G_s$ 2.6                   | (Assumed)          |        | <b>SWELL/COLLAPSE TEST</b><br>(ASTM D4546, Method B) |  |  |                                | <br>GeoMat Testing Laboratories, Inc.<br>9980 Indiana Ave, Suite 14<br>Riverside, California 92503 |  |  |  |  |  |
| % Collapse: 3.35 %                            | "Moderate Problem" |        |                                                      |  |  |                                |                                                                                                                                                                                         |  |  |  |  |  |
| Sample Location: B-9 @ 5' (1.4 ksf Surcharge) |                    |        |                                                      |  |  |                                |                                                                                                                                                                                         |  |  |  |  |  |
| Soil Classification: SM                       |                    |        |                                                      |  |  |                                |                                                                                                                                                                                         |  |  |  |  |  |



# GeoMat Testing Laboratories, Inc.

Soil Engineering, Environmental Engineering, Materials Testing, Geology

## SOLUBLE SULFATE AND CHLORIDE TEST RESULTS

Project Name APN 0463-231-06, Apple Valley, CA

Test Date

5/25/2022

Project No. 22160-01

Date Sampled

5/23/2022

Project Location APN 0463-231-06, Apple Valley, CA

Sampled By

MN

Location in Structure B-1 @ 0-5'

Sample Type

Bulk

Sampled Classification SM

Tested By

AM

Sample weight before drying

Sample weight after drying

Sample Weight Passing No. 10 Sieve

Moisture (%)

## TESTING INFORMATION

| Location | Mixing Ratio | Dilution Factor | Sulfate Reading (ppm) | Sulfate Content |       |
|----------|--------------|-----------------|-----------------------|-----------------|-------|
|          |              |                 |                       | (ppm)           | (%)   |
| B-1      | 3            | 1               | 90                    | 270             | 0.027 |
|          |              |                 |                       |                 |       |
| Average  |              |                 |                       |                 |       |

| Chloride Reading (ppm) | Chloride Content |     |
|------------------------|------------------|-----|
|                        | (ppm)            | (%) |
|                        |                  |     |
|                        |                  |     |
|                        |                  |     |
| Average                |                  |     |

| pH      |  |
|---------|--|
|         |  |
|         |  |
|         |  |
| Average |  |

ACI 318-19 Table 19.3.2.1 - Requirements for Concrete by Exposure Class

| Exposure Class | Water-Soluble Sulfate (%) | Maximum w/cm      | Minimum f'c (psi)                                                                                     | Cementitious Material (Types)       |                                                                    |                              | Calcium Chloride Admixture |
|----------------|---------------------------|-------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|------------------------------|----------------------------|
|                |                           |                   |                                                                                                       | ASTM C150-                          | ASTM C595                                                          | ASTM C1157                   |                            |
| S0             | <0.10                     | N/A               | 2500                                                                                                  | No Type Restriction                 | No Type Restriction                                                | No Type Restriction          | No Restriction             |
| S1             | 0.10 to 0.20              | 0.50              | 4000                                                                                                  | II                                  | Type IP, IS, or IT with (MS) Designation                           | MS                           | No Restriction             |
| S2             | 0.20 to 2.00              | 0.45              | 4500                                                                                                  | V                                   | Type IP, IS, or IT with (HS) Designation                           | HS                           | Not Permitted              |
| S3             | Option 1                  | >2.00             | 0.45                                                                                                  | 4500<br>V + Pozzolan or Slag Cement | Type IP, IS, or IT with (HS) Designation + Pozzolan or Slag Cement | HS + Pozzolan or Slag Cement | Not Permitted              |
|                | Option 2                  | >2.00             | 0.40                                                                                                  | 5000<br>V                           | Types with (HS) designation                                        | HS                           | Not Permitted              |
| Exposure Class | Maximum w/cm              | Minimum f'c (psi) | Maximum Water-Soluble Chloride ion (Cl <sup>-</sup> ) Content in Concrete, Percent by Wight of Cement |                                     |                                                                    | Additional Provisions        |                            |
|                |                           |                   | Nonprestressed Concrete                                                                               |                                     | Prestressed Concrete                                               |                              |                            |
| C0             | N/A                       | 2500              | 1.00                                                                                                  |                                     | 0.06                                                               | None                         |                            |
| C1             | N/A                       | 2500              | 0.30                                                                                                  |                                     | 0.06                                                               | None                         |                            |
| C2             | 0.40                      | 5000              | 0.15                                                                                                  |                                     | 0.06                                                               | Concrete Cover               |                            |

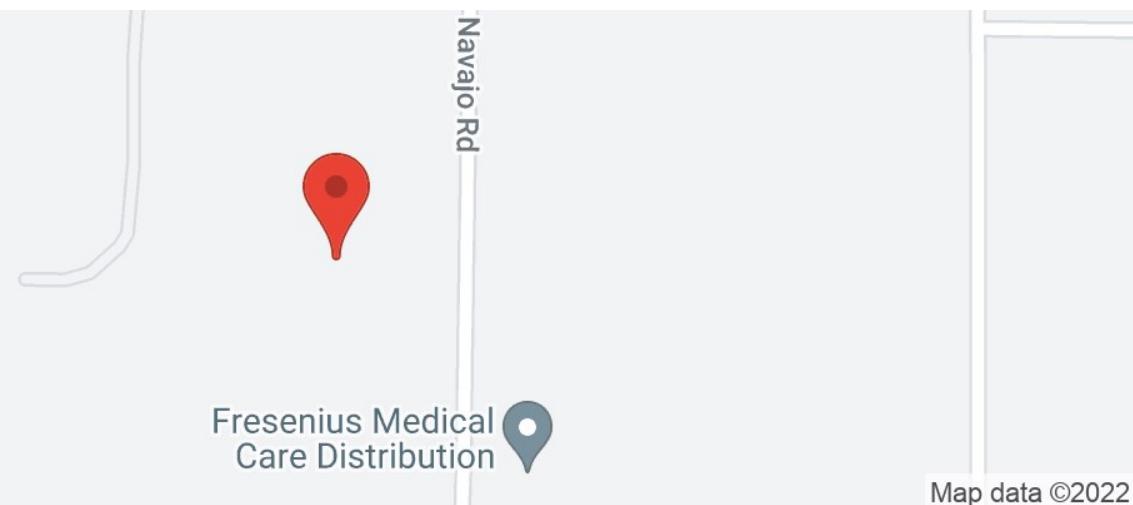
Caltrans classifies a site as corrosive to structural concrete as an area where soil and/or water contains >500pp chloride, >2000ppm sulfate, or has a pH <5.5. A minimum resistivity of less than 1000 ohm-cm indicates the potential for corrosive environment requiring testing for the above criteria.

The information in this form is not intended for corrosion engineering design. If corrosion is critical, a corrosion specialist should be contacted to provide further recommendations.

# APPENDIX D

## 2019 CBC SEISMIC DESIGN PARAMETERS




**GeoMat Testing Laboratories, Inc.**  
Geotechnical Engineering  
Engineering Geology  
Material Testing

**Inland Empire**  
9980 Indiana Ave, Suite 14  
Riverside, California 92503  
Office (951) 688-5400

**Los Angeles**  
5714 W. 96<sup>th</sup> Street  
Los Angeles, California 90045  
Office (310) 337-9400

[geomatlabs.com](http://geomatlabs.com)

Latitude, Longitude: 34.595628, -117.190423



|                                |                                  |
|--------------------------------|----------------------------------|
| Date                           | 5/26/2022, 9:32:54 AM            |
| Design Code Reference Document | ASCE7-16                         |
| Risk Category                  | II                               |
| Site Class                     | D - Default (See Section 11.4.3) |

| Type            | Value                    | Description                                             |
|-----------------|--------------------------|---------------------------------------------------------|
| S <sub>S</sub>  | 1.025                    | MCE <sub>R</sub> ground motion. (for 0.2 second period) |
| S <sub>1</sub>  | 0.393                    | MCE <sub>R</sub> ground motion. (for 1.0s period)       |
| S <sub>MS</sub> | 1.23                     | Site-modified spectral acceleration value               |
| S <sub>M1</sub> | null -See Section 11.4.8 | Site-modified spectral acceleration value               |
| S <sub>DS</sub> | 0.82                     | Numeric seismic design value at 0.2 second SA           |
| S <sub>D1</sub> | null -See Section 11.4.8 | Numeric seismic design value at 1.0 second SA           |

| Type             | Value                    | Description                                                                               |
|------------------|--------------------------|-------------------------------------------------------------------------------------------|
| SDC              | null -See Section 11.4.8 | Seismic design category                                                                   |
| F <sub>a</sub>   | 1.2                      | Site amplification factor at 0.2 second                                                   |
| F <sub>v</sub>   | null -See Section 11.4.8 | Site amplification factor at 1.0 second                                                   |
| PGA              | 0.441                    | MCE <sub>G</sub> peak ground acceleration                                                 |
| F <sub>PGA</sub> | 1.2                      | Site amplification factor at PGA                                                          |
| PGA <sub>M</sub> | 0.529                    | Site modified peak ground acceleration                                                    |
| T <sub>L</sub>   | 12                       | Long-period transition period in seconds                                                  |
| SsRT             | 1.025                    | Probabilistic risk-targeted ground motion. (0.2 second)                                   |
| SsUH             | 1.098                    | Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration  |
| SsD              | 1.653                    | Factored deterministic acceleration value. (0.2 second)                                   |
| S1RT             | 0.393                    | Probabilistic risk-targeted ground motion. (1.0 second)                                   |
| S1UH             | 0.427                    | Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration. |
| S1D              | 0.608                    | Factored deterministic acceleration value. (1.0 second)                                   |
| PGAd             | 0.69                     | Factored deterministic acceleration value. (Peak Ground Acceleration)                     |
| C <sub>RS</sub>  | 0.933                    | Mapped value of the risk coefficient at short periods                                     |
| C <sub>R1</sub>  | 0.922                    | Mapped value of the risk coefficient at a period of 1 s                                   |

#### DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC / OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

# APPENDIX E

## GENERAL EARTHWORK AND GRADING SPECIFICATIONS



**GeoMat Testing Laboratories, Inc.**  
Geotechnical Engineering  
Engineering Geology  
Material Testing

**Inland Empire**  
9980 Indiana Ave, Suite 14  
Riverside, California 92503  
Office (951) 688-5400

**Los Angeles**  
5714 W. 96<sup>th</sup> Street  
Los Angeles, California 90045  
Office (310) 337-9400

[geomatlabs.com](http://geomatlabs.com)

## **TABLE OF CONTENT**

|                              | Page |
|------------------------------|------|
| GENERAL .....                | I    |
| DEFINITION OF TERMS .....    | I    |
| OBLIGATIONS OF PARTIES ..... | III  |
| SITE PREPARATION .....       | IV   |
| SITE PROTECTION .....        | IV   |
| EXCAVATIONS .....            | V    |
| Unsuitable Materials .....   | V    |
| Cut Slopes.....              | V    |
| Pad Areas .....              | V    |
| COMPACTED FILL.....          | VI   |
| Placement .....              | VI   |
| Moisture .....               | VII  |
| Fill Material.....           | VII  |
| Fill Slopes.....             | VIII |
| Off-Site Fill .....          | VIII |
| DRAINAGE .....               | IX   |
| STAKING .....                | IX   |
| SLOPE MAINTENANCE .....      | IX   |
| Landscape Plants .....       | IX   |
| Irrigation .....             | IX   |
| Maintenance.....             | IX   |
| Repairs.....                 | X    |
| TRENCH BACKFILL .....        | X    |
| STATUS OF GRADING .....      | X    |

## **GENERAL**

The guidelines contained herein and the standard details attached hereto represent this firm's standard recommendation for grading and other associated operations on construction projects. These guidelines should be considered a portion of the project specifications.

All plates attached hereto shall be considered as part of these guidelines.

The Contractor should not vary from these guidelines without prior recommendation by the Geotechnical Consultant and the approval of the Client or his authorized representative. Recommendation by the Geotechnical Consultant and/or Client should not be considered to preclude requirements for the approval by the controlling agency prior to the execution of any changes.

These Standard Grading Guidelines and Standard Details may be modified and/or superseded by recommendations contained in the text of the preliminary Geotechnical Report and/or subsequent reports.

If disputes arise out of the interpretation of these grading guidelines or standard details, the Geotechnical Consultant shall provide the governing interpretation.

## **DEFINITION OF TERMS**

### **ALLUVIUM**

*Unconsolidated soil deposits resulting from flow of water, including sediments deposited in river beds, canyons, flood plains, lakes, fans and estuaries.*

**AS-GRADED (AS-BUILT):** The surface and subsurface conditions at completion of grading.

**BACKCUT:** A temporary construction slope at the rear of earth retaining structures such as buttresses, shear keys, stabilization fills or retaining walls.

**BACKDRAIN:** Generally a pipe and gravel or similar drainage system placed behind earth retaining structures such buttresses, stabilization fills, and retaining walls.

**BEDROCK:** Relatively undisturbed formation rock, more or less solid, either at the surface or beneath superficial deposits of soil.

**BENCH:** A relatively level step and near vertical rise excavated into sloping ground on which fill is to be placed.

**BORROW (Import):** Any fill material hauled to the project site from off-site areas.

**BUTTRESS FILL:** A fill mass, the configuration of which is designed by engineering calculations to retain slope conditions containing adverse geologic features. A buttress is generally specified by minimum key width and depth and by maximum backcut angle. A buttress normally contains a back-drainage system.

**CIVIL ENGINEER:** The Registered Civil Engineer or consulting firm responsible for preparation of the grading plans, surveying and verifying as-graded topographic conditions.

**CLIENT:** The Developer or his authorized representative who is chiefly in charge of the project. He shall have the responsibility of reviewing the findings and recommendations made by the Geotechnical Consultant and shall authorize the Contractor and/or other consultants to perform work and/or provide services.

**COLLUVIA:** Generally loose deposits usually found near the base of slopes and brought there chiefly by gravity through slow continuous downhill creep (also see Slope Wash).

**COMPACTION :** Densification of man-placed fill by mechanical means.

**CONTRACTOR** – A person or company under contract or otherwise retained by the Client to perform demolition, grading and other site improvements.

**DEBRIS:** All products of clearing, grubbing, demolition, and contaminated soil materials unsuitable for reuse as compacted fill, and/or any other material so designated by the Geotechnical Consultant.

**ENGINEERING GEOLOGIST:** A Geologist holding a valid certificate of registration in the specialty of Engineering Geology.

**ENGINEERED FILL:** A fill of which the Geotechnical Consultant or his representative, during grading, has made sufficient tests to enable him to conclude that the fill has been placed in substantial compliance with the recommendations of the Geotechnical Consultant and the governing agency requirements.

**EROSION:** The wearing away of ground surface as a result of the movement of wind, water, and/or ice.

**EXCAVATION:** The mechanical removal of earth materials.

**EXISTING GRADE:** The ground surface configuration prior to grading.

**FILL:** Any deposits of soil, rock, soil-rock blends or other similar materials placed by man.

**FINISH GRADE:** The ground surface configuration at which time the surface elevations conform to the approved plan.

GEOFABRIC: Any engineering textile utilized in geotechnical applications including subgrade stabilization and filtering.

GEOLOGIST: A representative of the Geotechnical Consultant educated and trained in the field of geology.

GEOTECHNICAL CONSULTANT: The Geotechnical Engineering and Engineering Geology consulting firm retained to provide technical services for the project. For the purpose of these specifications, observations by the Geotechnical Consultant include observations by the Soil Engineer, Geotechnical Engineer, Engineering Geologist and those performed by persons employed by and responsible to the Geotechnical Consultants.

GEOTECHNICAL ENGINEER: A licensed Geotechnical Engineer or Civil Engineer who applies scientific methods, engineering principles and professional experience to the acquisition, interpretation and use of knowledge of materials of the earth's crust for the evaluation of engineering problems. Geotechnical Engineering encompasses many of the engineering aspects of soil mechanics, rock mechanics, geology, geophysics, hydrology and related sciences.

GRADING: Any operation consisting of excavation, filling or combinations thereof and associated operations.

LANDSIDE DEBRIS: Material, generally porous and of low density, produced from instability of natural or man-made slopes.

MAXIMUM DENSITY: Standard laboratory test for maximum dry unit weight. Unless otherwise specified, the maximum dry unit weight shall be determined in accordance with ASTM Method of Test D 1557-91.

OPTIMUM MOISTURE – Soil moisture content at the test maximum density.

RELATIVE COMPACTION: The degree of compaction (expressed as a percentage) of dry unit weight of a material as compared to the maximum dry unit weight of the material.

ROUGH GRADE: The ground surface configuration at which time the surface elevations approximately conform to the approved plan.

SITE: The particular parcel of land where grading is being performed.

SHEAR KEY: Similar to buttress, however, it is generally constructed by excavating a slot within a natural slope, in order to stabilize the upper portion of the slope without grading encroaching into the lower portion of the slope.

SLOPE: An inclined ground surface, the steepness of which is generally specified as a ratio of horizontal:vertical (e.g., 2:1)

SLOPE WASH: Soil and/or rock material that has been transported down a slope by action of gravity assisted by runoff water not confined by channels (also see Colluvium).

SOIL: Naturally occurring deposits of sand, silt, clay, etc., or combinations thereof.

SOIL ENGINEER: Licensed Geotechnical Engineer or Civil Engineer experienced in soil mechanics (also see Geotechnical Engineer).

STABILIZATION FILL: A fill mass, the configuration of which is typically related to slope height and specified by the standards of practice for enhancing the stability of locally adverse conditions. A stabilization fill is normally specified by minimum key width and depth and by maximum backcut angle. A stabilization fill may or may not have a backdrainage system specified.

SUBDRAIN: Generally a pipe and gravel or similar drainage system placed beneath a fill in the alignment of canyons or formed drainage channels.

SLOUGH: Loose, non-compacted fill material generated during grading operations.

TAILINGS: Non-engineered fill which accumulates on or adjacent to equipment haul-roads.

TERRACE: Relatively level step constructed in the face of a graded slope surface for drainage control and maintenance purposes.

TOPSOIL: The presumable fertile upper zone of soil, which is usually darker in color and loose.

WINDROW: A string of large rocks buried within engineered fill in accordance with guidelines set forth by the Geotechnical Consultant.

## **OBLIGATIONS OF PARTIES**

The Geotechnical Consultant should provide observation and testing services and should make evaluations in order to advise the Client on Geotechnical matters. The Geotechnical Consultant should report his findings and recommendations to the Client or his authorized representative.

The client should be chiefly responsible for all aspects of the project. He or his authorized representative has the responsibility of reviewing the findings and recommendations of the Geotechnical Consultant. He shall authorize or cause to have authorized the Contractor and/or other consultants to perform work and/or provide services.

During grading the Client or his authorized representative should remain on-site or should remain reasonably accessible to all concerned parties in order to make decisions necessary to maintain the flow of the project.

The Contractor should be responsible for the safety of the project and satisfactory completion of all grading and other associated operations on construction projects, including but not limited to, earthwork in accordance with the project plans, specifications and controlling agency requirements. During grading, the Contractor or his authorized representative should remain on-site. Overnight and on days off, the Contractor should remain accessible.

## **SITE PREPARATION**

The Client, prior to any site preparation or grading, should arrange and attend a meeting among the Grading Contractor, the Design Engineer, the Geotechnical Consultant, representatives of the appropriate governing authorities as well as any other concerned parties. All parties should be given at least 48 hours notice.

Clearing and grubbing should consist of the removal of vegetation such as brush, grass, woods, stumps, trees, roots of trees and otherwise deleterious natural materials from the areas to be graded. Clearing and grubbing should extend to the outside of all proposed excavation and fill areas.

Demolition should include removal of buildings, structures, foundations, reservoirs, utilities (including underground pipelines, septic tanks, leach fields, seepage pits, cisterns, mining shafts, tunnels, etc.) and man-made surface and subsurface improvements from the areas to be graded. Demolition of utilities should include proper capping and/or re-routing pipelines at the project perimeter and cutoff and capping of wells in accordance with the requirements of the governing authorities and the recommendations of the Geotechnical Consultant at the time of the demolition.

Trees, plants or man-made improvements not planned to be removed or demolished should be protected by the Contractor from damage or injury.

Debris generated during clearing, grubbing and/or demolition operations should be wasted from areas to be graded and disposed off-site. Clearing, grubbing and demolition operations should be performed under the observation of the Geotechnical Consultant.

The Client or Contractor should obtain the required approvals for the controlling authorities for the project prior, during and/or after demolition, site preparation and removals, etc. The appropriate approvals should be obtained prior to proceeding with grading operations.

## **SITE PROTECTION**

Protection of the site during the period of grading should be the responsibility of the Contractor. Unless other provisions are made in writing and agreed upon among the concerned parties, completion of a portion of the project should not be considered to preclude that portion or adjacent areas from the requirements for site protection until such time as the entire project is complete as identified by the Geotechnical Consultant, the Client and the regulating agencies.

The Contractor should be responsible for the stability of all temporary excavations. Recommendations by the Geotechnical Consultant pertaining to temporary excavations (e.g., backcuts) are made in consideration of stability of the completed project and therefore, should not be considered to preclude the responsibilities of the Contractor. Recommendations by the Geotechnical Consultant should not be considered to preclude more restrictive requirements by the regulating agencies.

Precautions should be taken during the performance of site clearing, excavations and grading to protect the work site from flooding, ponding, or inundation by poor or improper surface drainage. Temporary provisions should be made during the rainy season to adequately direct surface drainage away from and off the work site. Where low areas can not be avoided, pumps should be kept on hand to continually remove water during periods of rainfall.

During periods of rainfall, plastic sheeting should be kept reasonably accessible to prevent unprotected slopes from becoming saturated. Where necessary during periods of rainfall, the Contractor should install check-dams de-silting basins, rip-rap, sandbags or other devices or methods necessary to control erosion and provide safe conditions.

During periods of rainfall, the Geotechnical Consultant should be kept informed by the Contractor as to the nature of remedial or preventative work being performed (e.g., pumping, placement of sandbags or plastic sheeting, other labor, dozing, etc.).

Following periods of rainfall, the Contractor should contact the Geotechnical Consultant and arrange a walk-over of the site in order to visually assess rain related damage. The Geotechnical Consultant may also recommend excavations and testing in order to aid in his assessments. At the request of the Geotechnical Consultant, the Contractor shall make excavations in order to evaluate the extent of rain related damage. Rain-related damage should be considered to include, but may not be limited to, erosion, silting, saturation, swelling, structural distress and other adverse conditions identified by the Geotechnical Consultant. Soil adversely affected should be classified as Unsuitable Materials and should be subject to overexcavation and replaced with compacted fill or other remedial grading as recommended by the Geotechnical Consultant.

Relatively level areas, where saturated soils and/or erosion gullies exist to depths greater than 1 foot, should be overexcavated to unaffected, competent material. Where less than 1 foot in depth, unsuitable materials may be processed in-place to achieve near optimum moisture conditions, then thoroughly recompacted in accordance with the applicable specifications. If the desired results are not achieved, the affected materials should be overexcavated then replaced in accordance with the applicable specifications. In slope areas, where saturated soil and/or erosion gullies exist to depths of greater than 1 foot, should be over-excavated to unaffected, competent material. Where affected materials exist to depths of 1 foot or less below proposed finished grade, remedial grading by moisture conditioning in-place, followed by thorough recompaction in accordance with the applicable grading guidelines herein may be attempted. If the desired results are not achieved, all affected materials should be overexcavated and replaced as compacted fill in accordance with the slope repair recommendations herein. As field conditions dictate, other slope repair procedures may be recommended by the Geotechnical Consultant.

## **EXCAVATIONS**

### **UNSUITABLE MATERIALS:**

Materials which are unsuitable should be excavated under observation and recommendations of the Geotechnical Consultant. Unsuitable materials include, but may not be limited to dry, loose, soft, wet, organic compressible natural soils and fractured, weathered, soft, bedrock and nonengineered or otherwise deleterious fill materials.

Materials identified by the Geotechnical Consultant as unsatisfactory due to its moisture conditions should be overexcavated, watered or dried, as needed, and thoroughly blended to uniform near optimum moisture condition (per Moisture guidelines presented herein) prior to placement as compacted fill.

### **CUT SLOPES:**

Unless otherwise recommended by the Geotechnical Consultant and approved by the regulating agencies, permanent cut slopes should not be steeper than 2:1 (horizontal:vertical).

If excavations for cut slopes expose loose, cohesionless, significantly fractured or otherwise suitable material, overexcavation and replacement of the unsuitable materials with a compacted stabilization fill should be accomplished as recommended by the Geotechnical Consultant. Unless otherwise specified by the Geotechnical Consultant, stabilization fill construction should conform to the requirements of the Standard Details.

The Geotechnical Consultant should review cut slopes during excavation. The Geotechnical Consultant should be notified by the contractor prior to beginning slope excavations.

If during the course of grading, adverse or potentially adverse geotechnical conditions are encountered which were not anticipated in the preliminary report, the Geotechnical Consultant should explore, analyze and make recommendations to treat these problems.

When cuts slopes are made in the direction of the prevailing drainage, a non-erodible diversion swale (brow ditch) should be provided at the top-of-cut.

### **PAD AREAS:**

All lot pad areas, including side yard terraces, above stabilization fills or buttresses should be over-excavated to provide for a minimum of 3-feet (refer to Standard Details) of compacted fill over the entire pad area. Pad areas with both fill and cut materials exposed and pad areas containing both very shallow (less than 3-feet) and deeper fill should be over-thickness (refer to Standard Details).

Cut areas exposing significantly varying material types should also be overexcavated to provide for at least a 3-foot thick compacted fill blanket. Geotechnical conditions may require greater depth of overexcavation. The actual depth should be delineated by the Geotechnical Consultant during grading.

For pad areas created above cut or natural slopes, positive drainage should be established away from the top-of-slope. This may be accomplished utilizing a berm and/or an appropriate pad gradient. A gradient in soil areas away from the top-of-slope of 2 percent or greater is recommended.

### **COMPACTED FILL**

All fill materials should be compacted as specified below or by other methods specifically recommended by the Geotechnical Consultant. Unless otherwise specified, the minimum degree of compaction (relative compaction) should be 90 percent of the laboratory maximum density.

#### **PLACEMENT**

Prior to placement of compacted fill, the Contractor should request a review by the Geotechnical Consultant of the exposed ground surface. Unless otherwise recommended, the exposed ground surface should then be scarified (6-inches minimum), watered or dried as needed, thoroughly blended to achieve near optimum moisture conditions, then thoroughly compacted to a minimum of 90 percent of the maximum density. The review by the Geotechnical Consultants should not be considered to preclude requirements of inspection and approval by the governing agency.

Compacted fill should be placed in thin horizontal lifts not exceeding 8-inches in loose thickness prior to compaction. Each lift should be watered or dried as needed, thoroughly blended to achieve near optimum moisture conditions then thoroughly compacted by mechanical methods to a minimum of 90 percent of laboratory maximum dry density. Each lift should be treated in a like manner until the desired finished grades are achieved.

The Contractor should have suitable and sufficient mechanical compaction equipment and watering apparatus on the job site to handle the amount of fill being placed in consideration of moisture retention properties of the materials. If necessary, excavation equipment should be "shut down" temporarily in order to permit proper compaction of fills. Earth moving equipment should only be considered a supplement and not substituted for conventional compaction equipment.

When placing fill in horizontal lifts adjacent to areas sloping steeper than 5:1 (horizontal:vertical), horizontal keys and vertical benches should be excavated into the adjacent slope area. Keying and benching should be sufficient to provide at least 6-foot wide benches and minimum of 4-feet of vertical bench height within the firm natural ground, firm bedrock or engineered compacted fill. No compacted fill should be placed in an area subsequent to keying and benching until the area has been reviewed by the Geotechnical Consultant. Material generated by the benching operation should be moved sufficiently away from the bench area to allow for the recommended review of the horizontal bench prior to placement of fill. Typical keying and benching details have been included within the accompanying Standard Details.

Within a single fill area where grading procedures dictate two or more separate fills, temporary slopes (false slopes) may be created. When placing fill adjacent to a false slope, benching should be conducted in the same manner as above described. At least a 3-foot vertical bench should be established within the firm core of adjacent approved compacted fill prior to placement of additional fill. Benching should proceed in at least 3-foot vertical increments until the desired finished grades are achieved.

Fill should be tested for compliance with the recommended relative compaction and moisture conditions. Field density testing should conform to ASTM Method of Testing D 1556-64, D 2922-78 and/or D2937-71. Tests should be provided for about every 2 vertical feet or 1,000 cubic yards of fill placed. Actual test intervals may vary as field conditions dictate. Fill found not to be in conformance with the grading recommendations should be removed or otherwise handled as recommended by the Geotechnical Consultant.

The Contractor should assist the Geotechnical Consultant and/or his representative by digging test pits for removal determinations and/or for testing compacted fill.

As recommended by the Geotechnical Consultant, the Contractor should "shutdown" or remove any grading equipment from an area being tested.

The Geotechnical Consultant should maintain a plan with estimated locations of field tests. Unless the client provides for actual surveying of test locations, by the Geotechnical Consultant should only be considered rough estimates and should not be utilized for the purpose of preparing cross sections showing test locations or in any case for the purpose of after-the-fact evaluating of the sequence of fill placement.

#### MOISTURE

For field testing purposes, "near optimum" moisture will vary with material type and other factors including compaction procedures. "Near optimum" may be specifically recommended in Preliminary Investigation Reports and/or may be evaluated during grading.

Prior to placement of additional compacted fill following an overnight or other grading delay, the exposed surface of previously compacted fill should be processed by scarification, watered or dried as needed, thoroughly blended to near-optimum moisture conditions, then recompacted to a minimum of 90 percent of laboratory maximum dry density. Where wet or other dry or other unsuitable materials exist to depths of greater than one foot, the unsuitable materials should be overexcavated.

Following a period of flooding, rainfall or overwatering by other means, no additional fill should be placed until damage assessments have been made and remedial grading performed as described herein.

#### FILL MATERIAL

Excavated on-site materials which are acceptable to the Geotechnical Consultant may be utilized as compacted fill, provided trash, vegetation and other deleterious materials are removed prior to placement.

Where import materials are required for use on-site, the Geotechnical Consultant should be notified at least 72 hours in advance of importing, in order to sample and test materials from proposed borrow sites. No import materials should be delivered for use on-site without prior sampling and testing by Geotechnical Consultant.

Where oversized rock or similar irreducible material is generated during grading, it is recommended, where practical, to waste such material off-site or on-site in areas designated as "nonstructural rock disposal areas". Rock placed in disposal areas should be placed with sufficient fines to fill voids. The rock should be compacted in lifts to an unyielding condition. The disposal area should be covered with at least 3-feet of compacted fill, which is free of oversized material. The upper 3-feet should be placed in accordance with the guidelines for compacted fill herein.

Rocks 3 inches in maximum dimension and smaller may be utilized within the compacted fill, provided they are placed in such a manner that nesting of the rock is avoided. Fill should be placed and thoroughly compacted over and around all rock. The amount of rock should not exceed 40 percent by dry weight passing the  $\frac{3}{4}$ -inch sieve size. The 3-inch and 40 percent recommendations herein may vary as field conditions dictate.

During the course of grading operations, rocks or similar irreducible materials greater than 3-inch maximum dimension (oversized material) may be generated. These rocks should not be placed within the compacted fill unless placed as recommended by the Geotechnical Consultant.

Where rocks or similar irreducible materials of greater than 3-inches but less than 4-feet of maximum dimension are generated during grading, or otherwise desired to be placed within an engineered fill, special handling in accordance with the accompanying Standard Details is recommended. Rocks greater than 4 feet should be broken down or disposed off-site. Rocks up to 4-feet maximum dimension should be placed below the upper 10-feet of any fill and should not be closer than 20-feet to any slope face. These recommendations could vary as locations of improvements dictate. Where practical, oversized material should not be placed below areas where structures of deep utilities are proposed.

Oversized material should be placed in windrows on a clean, overexcavated or unyielding compacted fill or firm natural ground surface. Select native or imported granular soil (S.E. 30 or higher) should be placed and thoroughly flooded over and around all windrowed rock, such that voids are filled. Windrows of oversized material should be staggered so that successive strata of oversized material are not in the same vertical plane.

It may be possible to dispose of individual larger rock as field conditions dictate and as recommended by the Geotechnical Consultant at time of placement.

Material that is considered unsuitable by the Geotechnical Consultant should not be utilized in the compacted fill.

During grading operations, placing and mixing the materials from the cut and/or borrow areas may result in soil mixtures which possess unique physical properties. Testing may be required of samples obtained directly from the fill areas in order to verify conformance with the specifications. Processing of these additional samples may take two or more working days. The Contractor may elect to move the operation to other areas within the project, or may continue placing compacted fill pending laboratory and field test results. Should he elect the second alternative, fill placed is done so at the Contractor's risk.

Any fill placed in areas not previously reviewed and evaluated by the Geotechnical Consultant, and/or in other areas, without prior notification to the Geotechnical Consultant may require removal and recompaction at the Contractor's expense. Determination of overexcavations should be made upon review of field conditions by the Geotechnical Consultant.

#### **FILL SLOPES**

Unless otherwise recommended by the Geotechnical Consultant and approved by the regulating agencies, permanent fill slopes should not be steeper than 2:1 (horizontal to vertical).

Except as specifically recommended otherwise or as otherwise provided for in these grading guidelines (Reference Fill Materials), compacted fill slopes should be overbuilt and cut back to grade, exposing the firm, compacted fill inner core. The actual amount of overbuilding may vary as field conditions dictate. If the desired results are not achieved, the existing slopes should be overexcavated and reconstructed under the guidelines of the Geotechnical Consultant. The degree of overbuilding shall be increased until the desired compacted slope surface condition is achieved. Care should be taken by the Contractor to provide thorough mechanical compaction to the outer edge of the overbuilt slope surface.

Although no construction procedure produces a slope free from risk of future movement, overfilling and cutting back of slope to a compacted inner core is, given no other constraints, the most desirable procedure. Other constraints, however, must often be considered. These constraints may include property line situations, access, the critical nature of the development, and cost. Where such constraints are identified, slope face compaction may be attempted by conventional construction procedures including backrolling techniques upon specific recommendations by the Geotechnical Consultant.

As a second best alternative for slopes of 2:1 (horizontal to vertical) or flatter, slope construction may be attempted as outlined herein. Fill placement should proceed in thin lifts, (i.e., 6 to 8 inch loose thickness). Each lift should be moisture conditioned and thoroughly compacted. The desired moisture condition should be maintained and/or reestablished, where necessary, during the period between successive lifts. Selected lifts should be tested to ascertain that desired compaction is being achieved. Care should be taken to extend compactive effort to the outer edge of the slope. Each lift should extend horizontally to the desired finished slope surface or more as needed to ultimately establish desired grades. Grade during construction should not be allowed to roll off at the edge of the slope. It may be helpful to elevate slightly the outer edge of the slope. Slough resulting from the placement of individual lifts should not be allowed to drift down over previous lifts. At intervals not exceeding 4-feet in vertical slope height or the capability of available equipment, whichever is less, fill slopes should be thoroughly backrolled utilizing a conventional sheepfoot-type roller. Care should be taken to maintain the desired moisture conditions and/or reestablishing same as needed prior to backrolling. Upon achieving final grade, the slopes should again be moisture conditioned and thoroughly backrolled. The use of a side-boom roller will probably be necessary and vibratory methods are strongly recommended. Without delay, so as to avoid (if possible) further moisture conditioning, the slopes should then be grid-rolled to achieve a relatively smooth surface and uniformly compact condition.

In order to monitor slope construction procedures, moisture and density tests will be taken at regular intervals. Failure to achieve the desired results will likely result in a recommendation by the Geotechnical Consultant to overexcavate the slope surfaces followed by reconstruction of the slopes utilizing overfilling and cutting back procedures and/or further attempt at the conventional backrolling approach. Other recommendations may also be provided which would be commensurate with field conditions.

Where placement of fill above a natural slope or above a cut slope is proposed, the fill slope configuration as presented in the accompanying standard Details should be adopted.

For pad areas above fill slopes, positive drainage should be established away from the top-of-slope. This may be accomplished utilizing a berm and pad gradients of at least 2-percent in soil area.

#### **OFF-SITE FILL**

Off-site fill should be treated in the same manner as recommended in these specifications for site preparation, excavation, drains, compaction, etc.

Off-site canyon fill should be placed in preparation for future additional fill, as shown in the accompanying Standard Details.

Off-site fill subdrains temporarily terminated (up canyon) should be surveyed for future relocation and connection.

## **DRAINAGE**

Canyon sub-drain systems specified by the Geotechnical Consultant should be installed in accordance with the Standard Details.

Typical sub-drains for compacted fill buttresses, slope stabilization or sidehill masses, should be installed in accordance with the specifications of the accompanying Standard Details.

Roof, pad and slope drainage should be directed away from slopes and areas of structures to suitable disposal areas via non-erodible devices (i.e., gutters, downspouts, concrete swales).

For drainage over soil areas immediately away from structures (i.e., within 4-feet), a minimum of 4 percent gradient should be maintained. Pad drainage of at least 2 percent should be maintained over soil areas. Pad drainage may be reduced to at least 1 percent for projects where no slopes exist, either natural or man-made, or greater than 10-feet in height and where no slopes are planned, either natural or man-made, steeper than 2:1 (horizontal to vertical slope ratio).

Drainage patterns established at the time of fine grading should be maintained throughout the life of the project. Property owners should be made aware that altering drainage patterns can be detrimental to slope stability and foundation performance.

## **STAKING**

In all fill areas, the fill should be compacted prior to the placement of the stakes. This is particularly important on fill slopes. Slope stakes should not be placed until the slope is thoroughly compacted (backrolled). If stakes must be placed prior to the completion of compaction procedures, it must be recognized that they will be removed and/or demolished at such time as compaction procedures resume.

In order to allow for remedial grading operations, which could include overexcavations or slope stabilization, appropriate staking offsets should be provided. For finished slope and stabilization backcut areas, we recommend at least 10-feet setback from proposed toes and tops-of-cut.

## **SLOPE MAINTENANCE LANDSCAPE PLANTS**

In order to enhance superficial slope stability, slope planting should be accomplished at the completion of grading. Slope planting should consist of deep-rooting vegetation requiring little watering. Plants native to the Southern California area and plants relative to native plants are generally desirable. Plants native to other semiarid and arid areas may also be appropriate. A Landscape Architect would be the best party to consult regarding actual types of plants and planting configuration.

## **IRRIGATION**

Irrigation pipes should be anchored to slope faces, not placed in trenches excavated into slope faces.

Slope irrigation should be minimized. If automatic timing devices are utilized on irrigation systems, provisions should be made for interrupting normal irrigation during periods of rainfall.

Though not a requirement, consideration should be given to the installation of near-surface moisture monitoring control devices. Such devices can aid in the maintenance of relatively uniform and reasonably constant moisture conditions.

Property owners should be made aware that overwatering of slopes is detrimental to slope stability.

## **MAINTENANCE**

Periodic inspections of landscaped slope areas should be planned and appropriate measures should be taken to control weeds and enhance growth of the landscape plants. Some areas may require occasional replanting and/or reseeding.

Terrace drains and downdrains should be periodically inspected and maintained free of debris. Damage to drainage improvements should be repaired immediately.

Property owners should be made aware that burrowing animals can be detrimental to slope stability. A preventative program should be established to control burrowing animals.

As a precautionary measure, plastic sheeting should be readily available, or kept on hand, to protect all slope areas from saturation by periods of heavy or prolonged rainfall. This measure is strongly recommended, beginning with the period of time prior to landscape planting.

## **REPAIRS**

If slope failures occur, the Geotechnical Consultant should be contacted for a field review of site conditions and development of recommendations for evaluation and repair.

If slope failure occurs as a result of exposure to periods of heavy rainfall, the failure areas and currently unaffected areas should be covered with plastic sheeting to protect against additional saturation.

In the accompanying Standard Details, appropriate repair procedures are illustrated for superficial slope failures (i.e., occurring typically within the outer 1 foot to 3 feet of a slope face).

## **TRENCH BACKFILL**

Utility trench backfill should, unless otherwise recommended, be compacted by mechanical means. Unless otherwise recommended, the degree of compaction should be a minimum of 95 percent of the laboratory maximum density.

Approved granular material (sand equivalent greater than 30) should be used to bed and backfill utilities to a depth of at least 1 foot over the pipe. This backfill should be uniformly watered, compacted and/or wheel-rolled from the surface to a firm condition for pipe support.

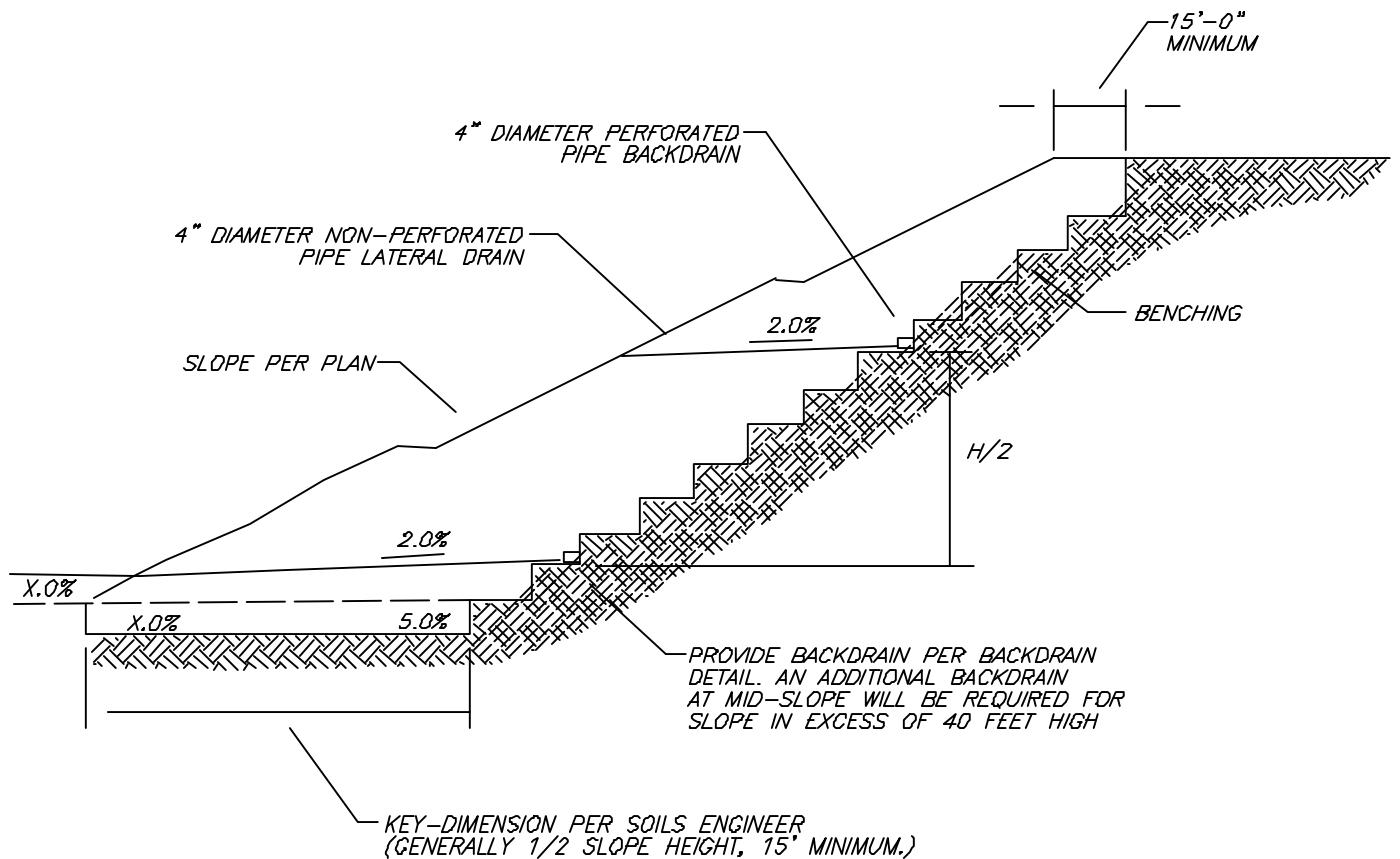
The remainder of the backfill shall be typical on-site soil or imported soil which should be placed in lifts not exceeding 8 inches in thickness, watered or aerated to at least 3 percent above the optimum moisture content, and mechanically compacted to at least 95 percent of maximum dry density (based on ASTM D1557).

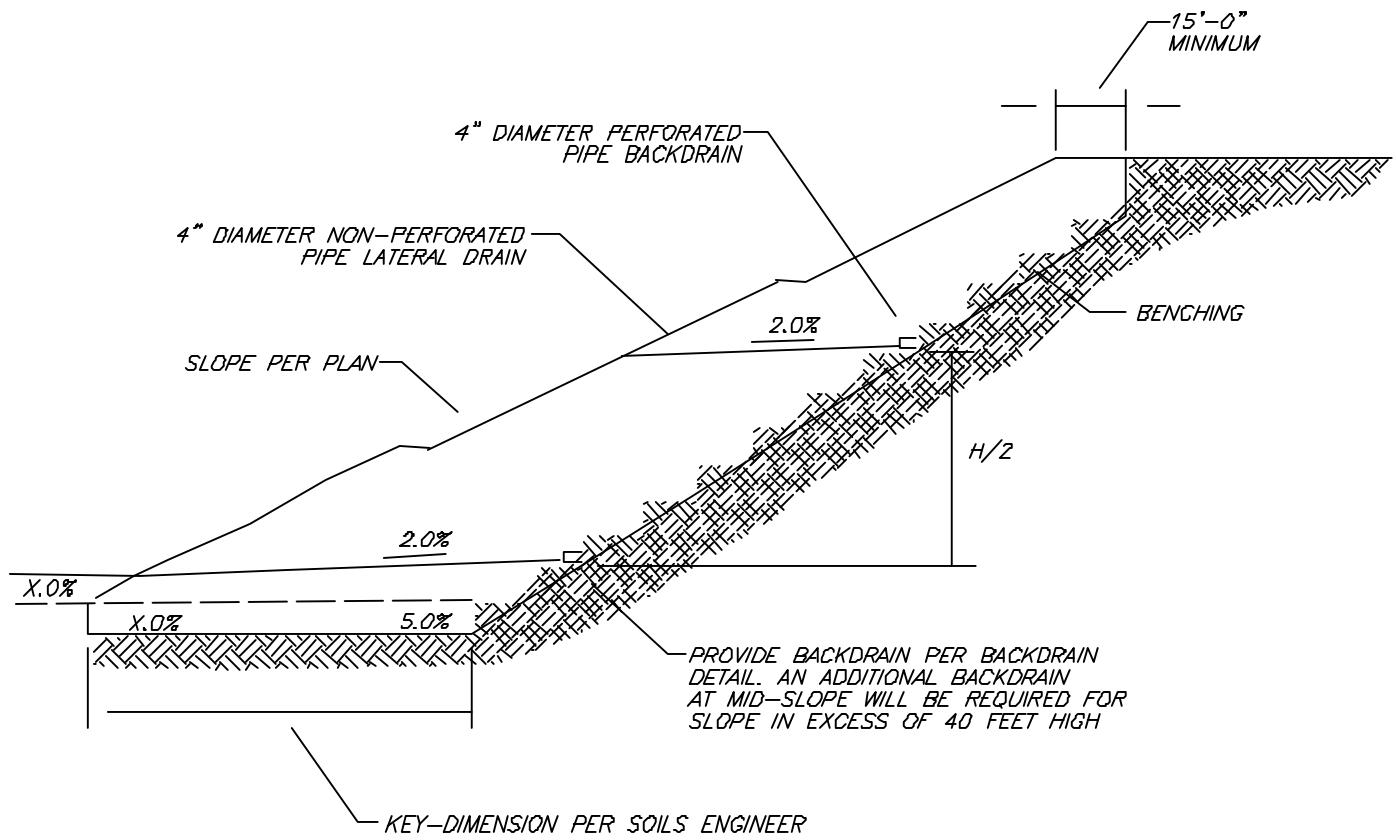
Backfill of exterior and interior trenches extending below a 1:1 projection from the outer edge of foundations should be mechanically compacted to a minimum of 95 percent of the laboratory maximum density.

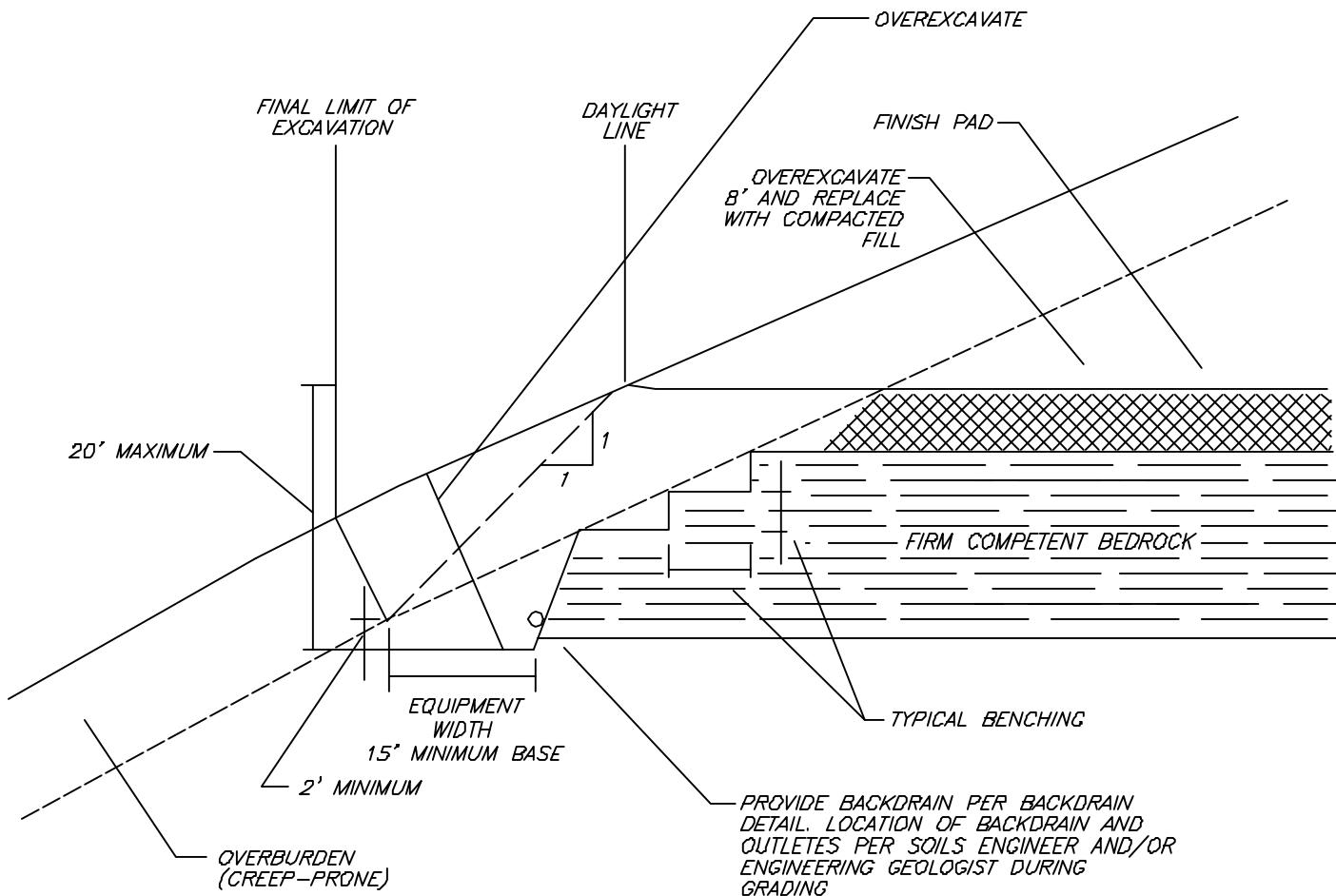
Within slab areas, but outside the influence of foundations, trenches up to 1 foot wide and 2 feet deep may be backfilled with sand and consolidated by uniformly watering or by mechanical means. If on-site materials are utilized, they should be wheel-rolled, tamped or otherwise compacted to a firm condition. For minor interior trenches, density testing may be deleted or spot testing may be elected if deemed necessary, based on review of back-fill operations during construction.

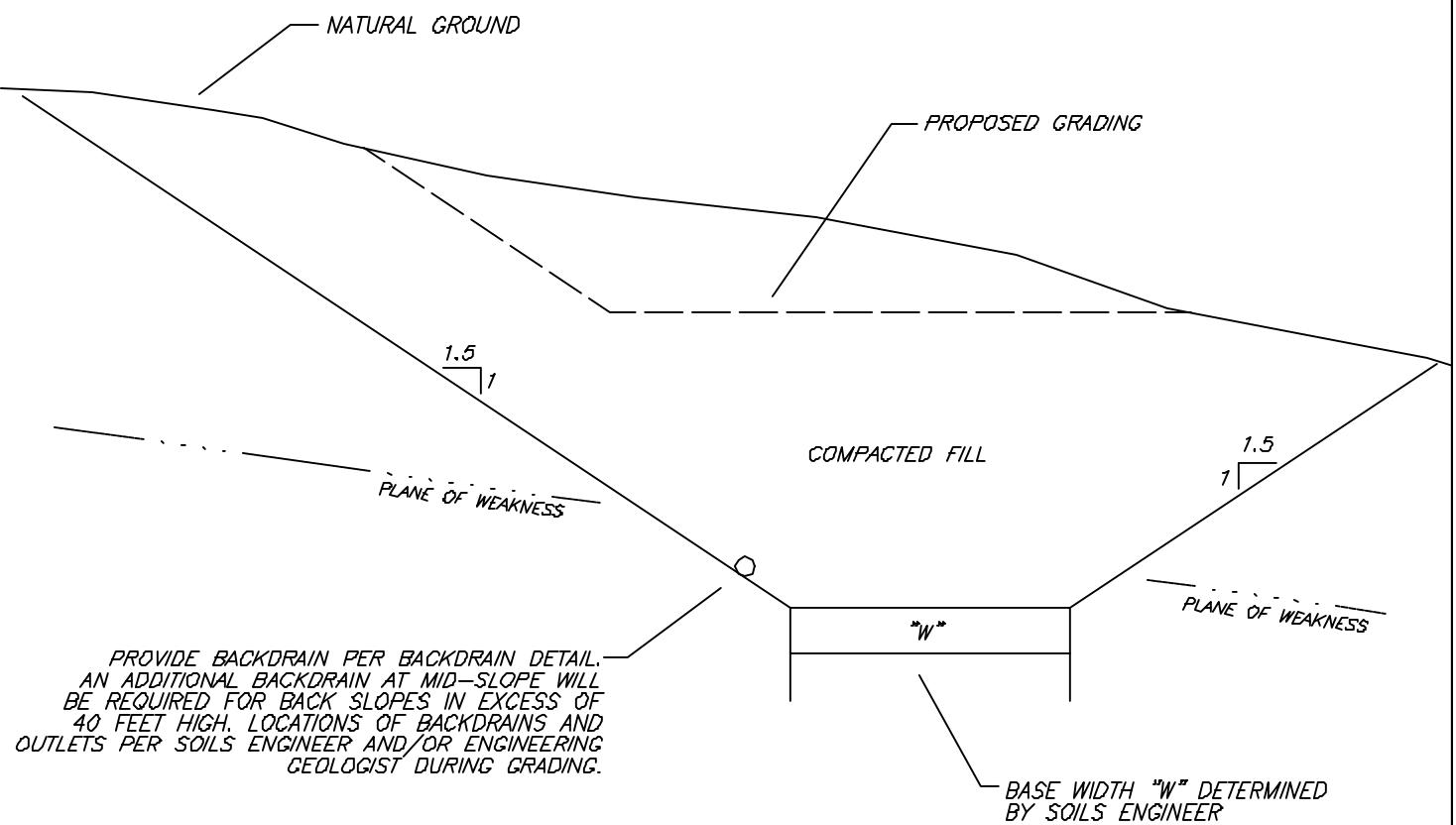
If utility contractors indicate that it is undesirable to use compaction equipment in close proximity to a buried conduit, the Contractor may elect the utilization of light weight compaction equipment and/or shading of the conduit with clean, granular material, which should be thoroughly jetted in-place above the conduit, prior to initiating mechanical compaction procedures. Other methods of utility trench compaction may also be appropriate, upon review by the Geotechnical Consultant at the time of construction.

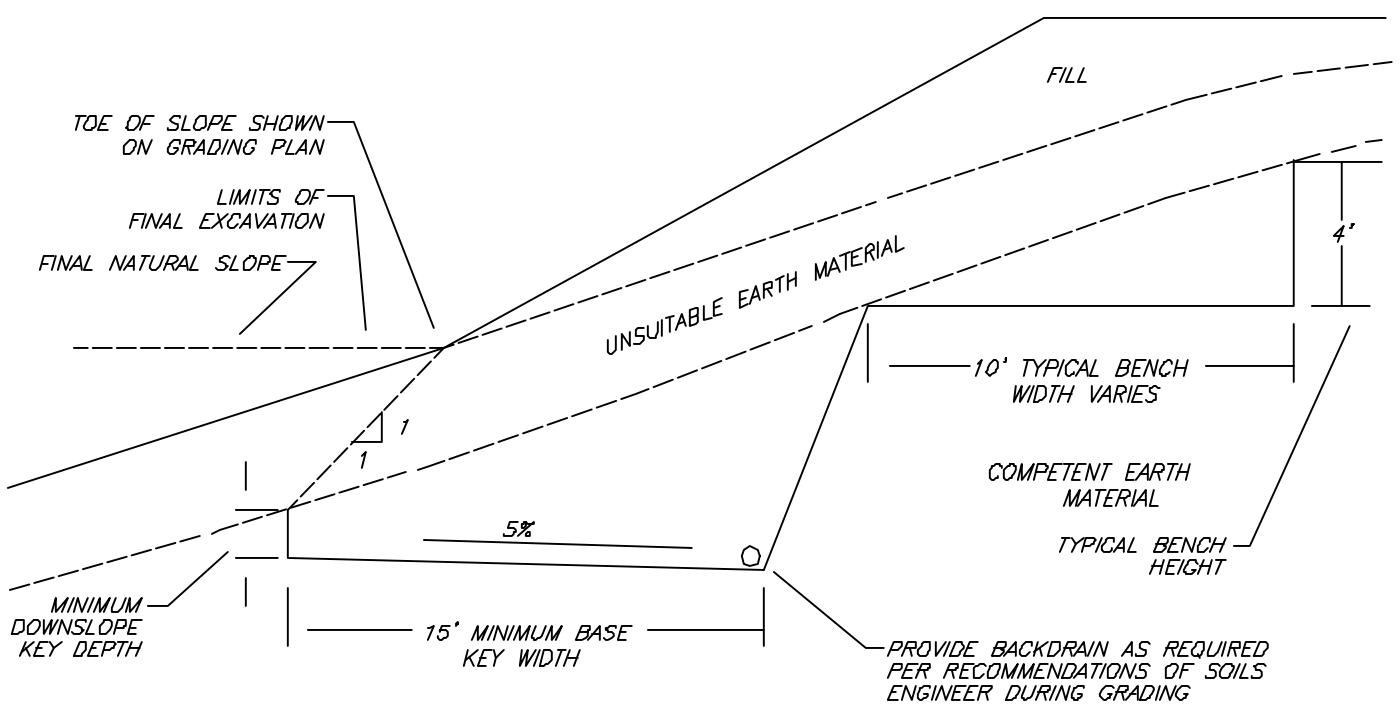
In cases where clean granular materials are proposed for use in lieu of native materials or where flooding or jetting is proposed, the procedures should be considered subject to review by the Geotechnical Consultant.


Clean Granular backfill and/or bedding are not recommended in slope areas unless provisions are made for a drainage system to mitigate the potential build-up of seepage forces.


## **STATUS OF GRADING**


Prior to proceeding with any grading operation, the Geotechnical Consultant should be notified at least two working days in advance in order to schedule the necessary observation and testing services.


Prior to any significant expansion of cut back in the grading operation, the Geotechnical Consultant should be provided with adequate notice (i.e., two days) in order to make appropriate adjustments in observation and testing services.


Following completion of grading operations and/or between phases of a grading operation, the Geotechnical Consultant should be provided with at least two working days notice in advance of commencement of additional grading operations.

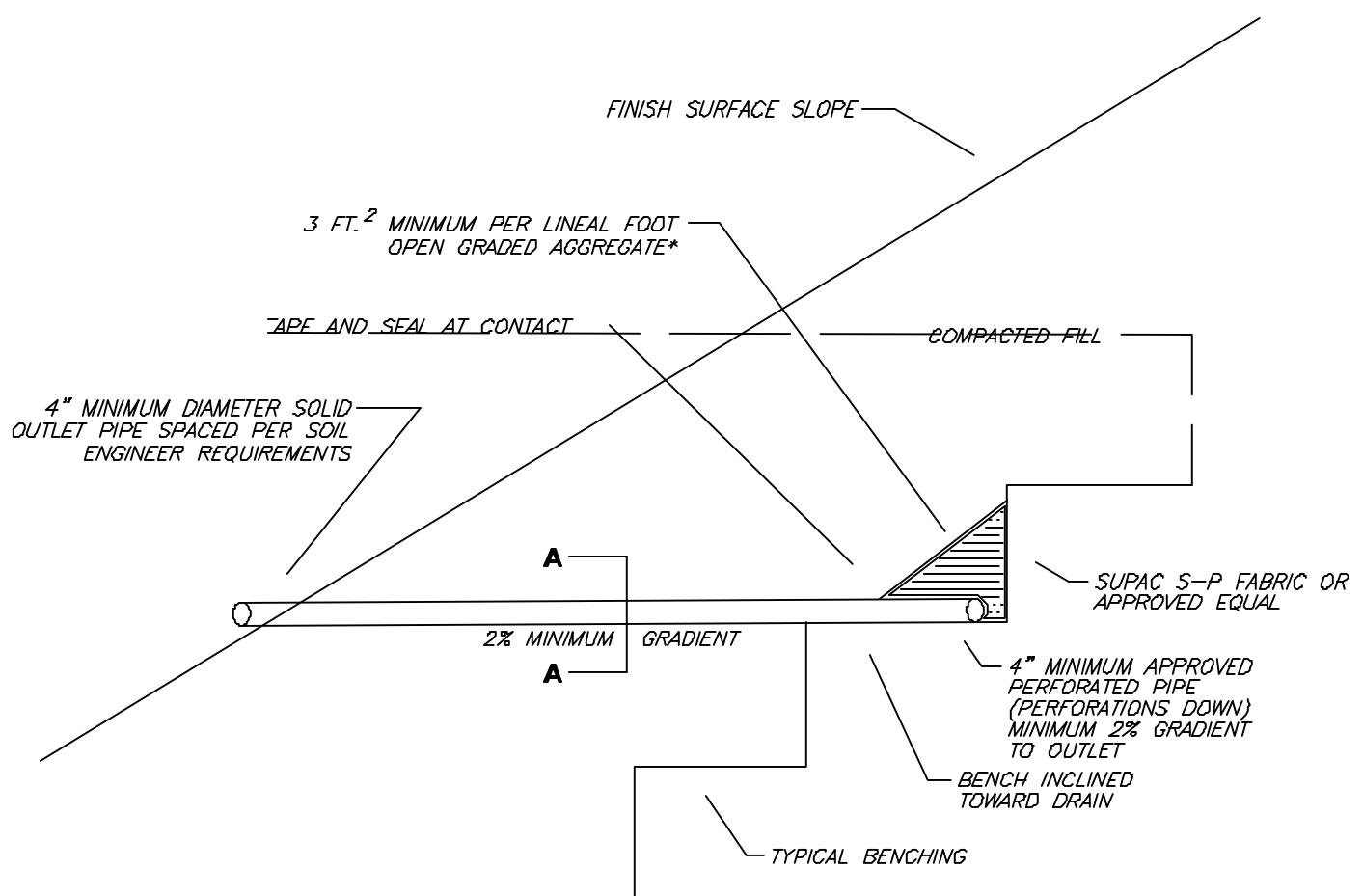




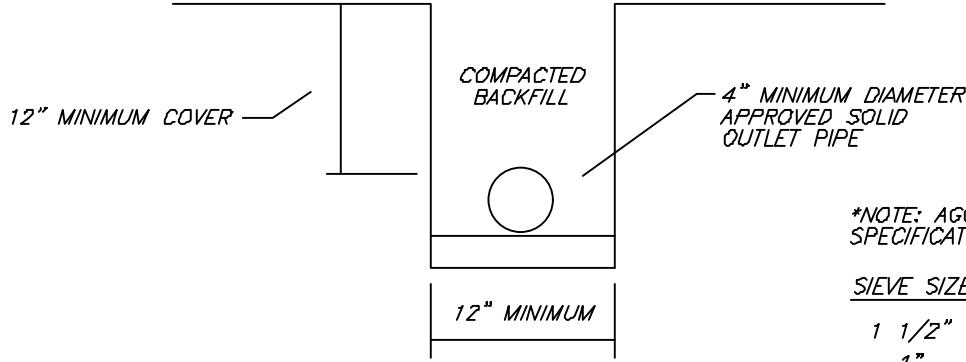






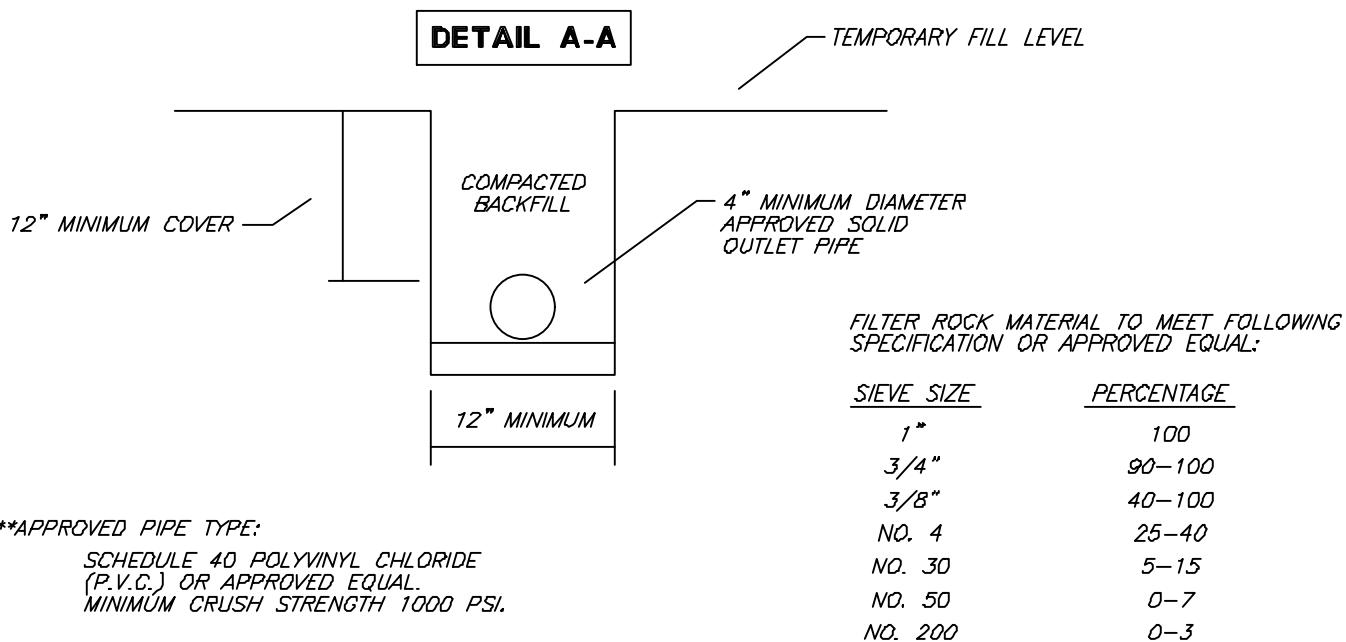
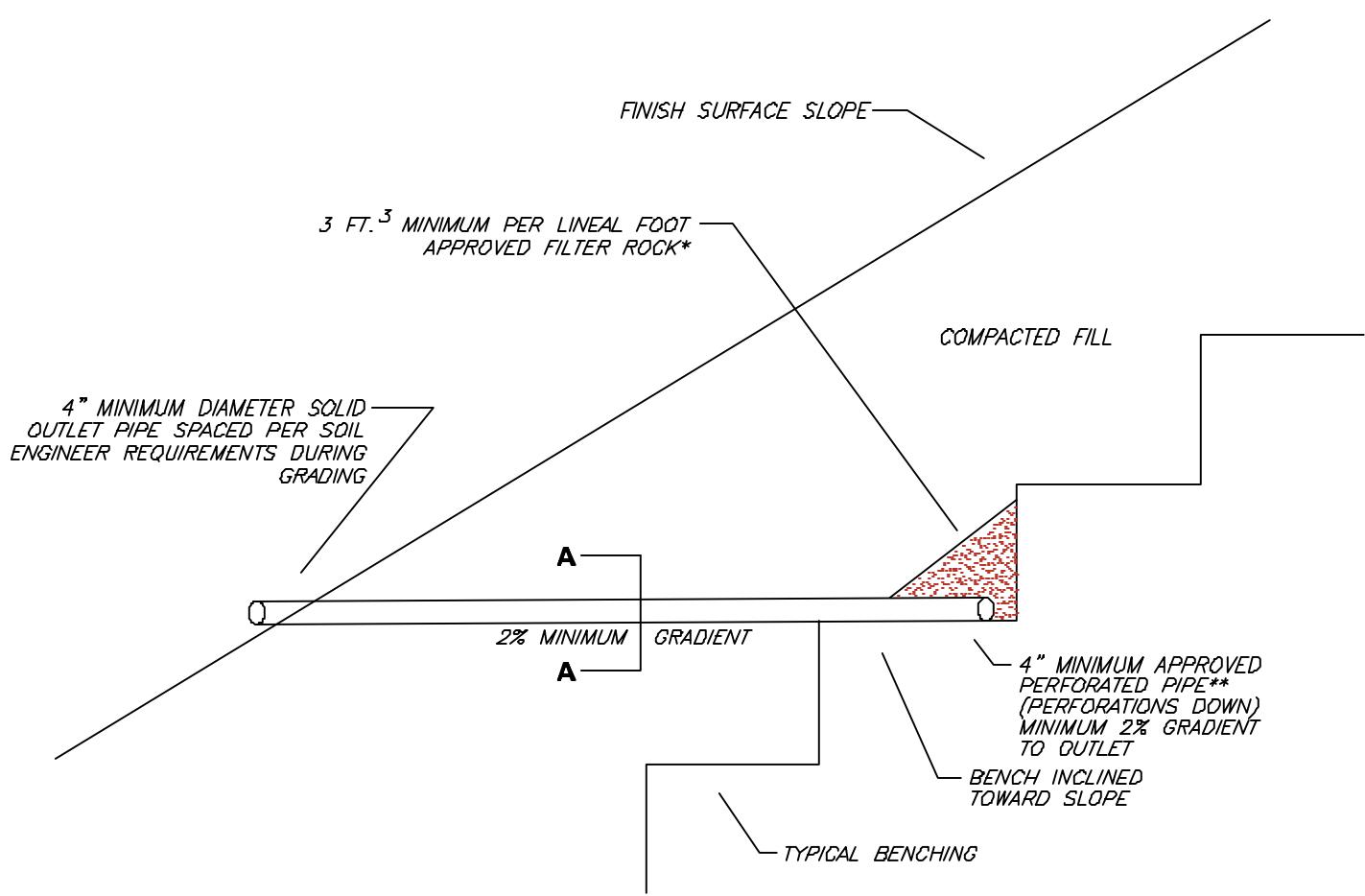


WHERE NATURAL SLOPE IS 5:1 OR LESS,  
BENCHING IS NOT NECESSARY, HOWEVER, FILL IS  
NOT TO BE PLACED ON COMPRESSIBLE OR  
UNUSUITABLE MATERIAL.

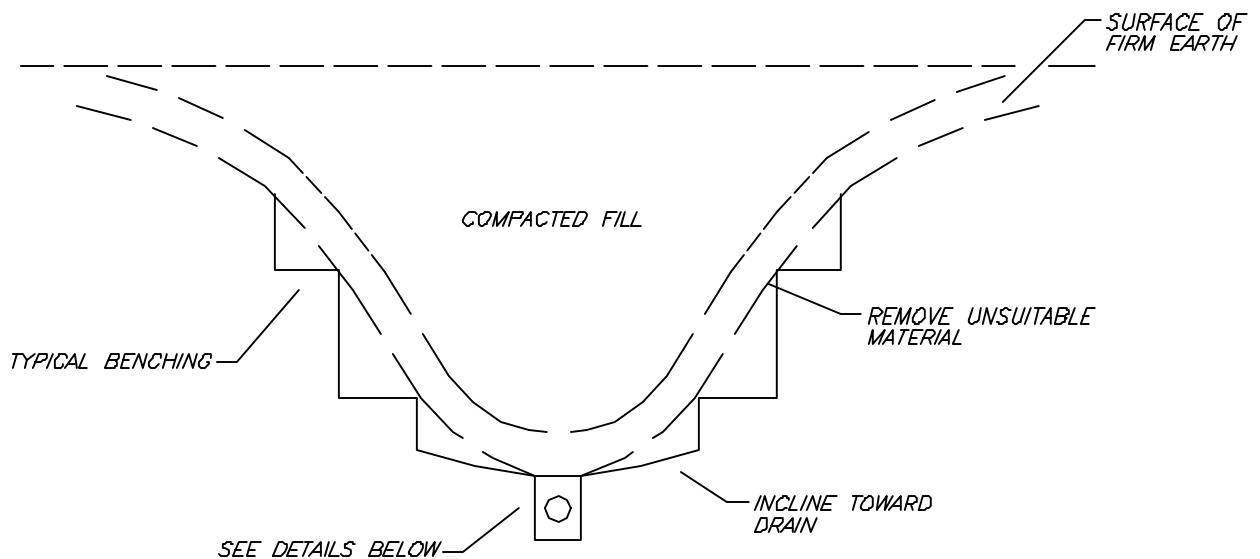



**geo**mat

**FILL SLOPE ABOVE CUT SLOPE DETAIL**

GENERAL EARTHWORK AND  
GRADING SPECIFICATIONS  
SHEET 6

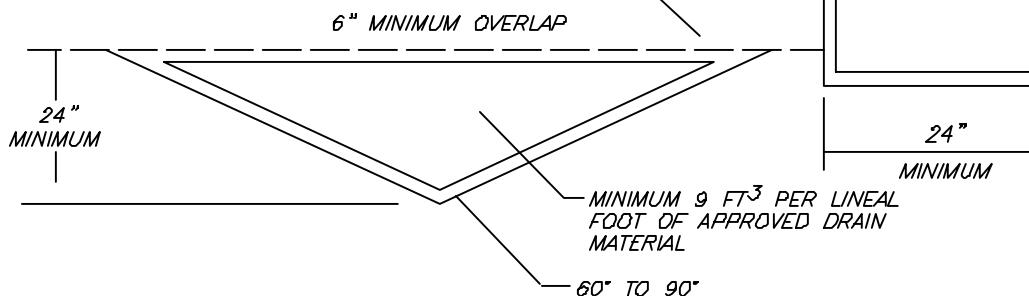
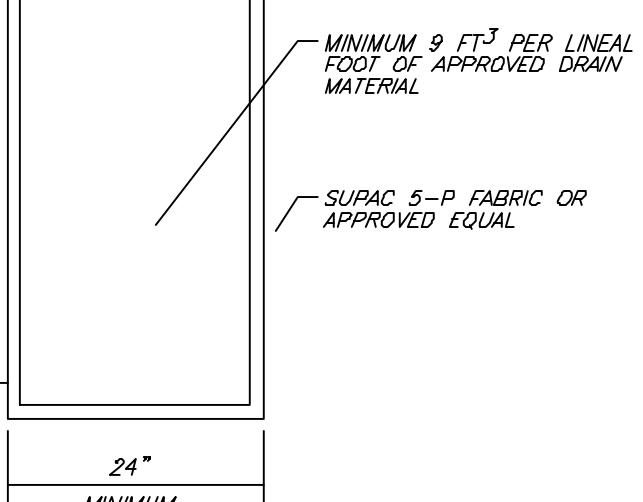


DETAIL A-A



\*NOTE: AGGREGATE TO MEET FOLLOWING  
SPECIFICATIONS OR APPROVED EQUAL:

| SIEVE SIZE | PERCENTAGE PASSING |
|------------|--------------------|
| 1 1/2"     | 100                |
| 1"         | 5-40               |
| 3/4"       | 0-17               |
| 3/8"       | 0-7                |
| NO. 200    | 0-3                |



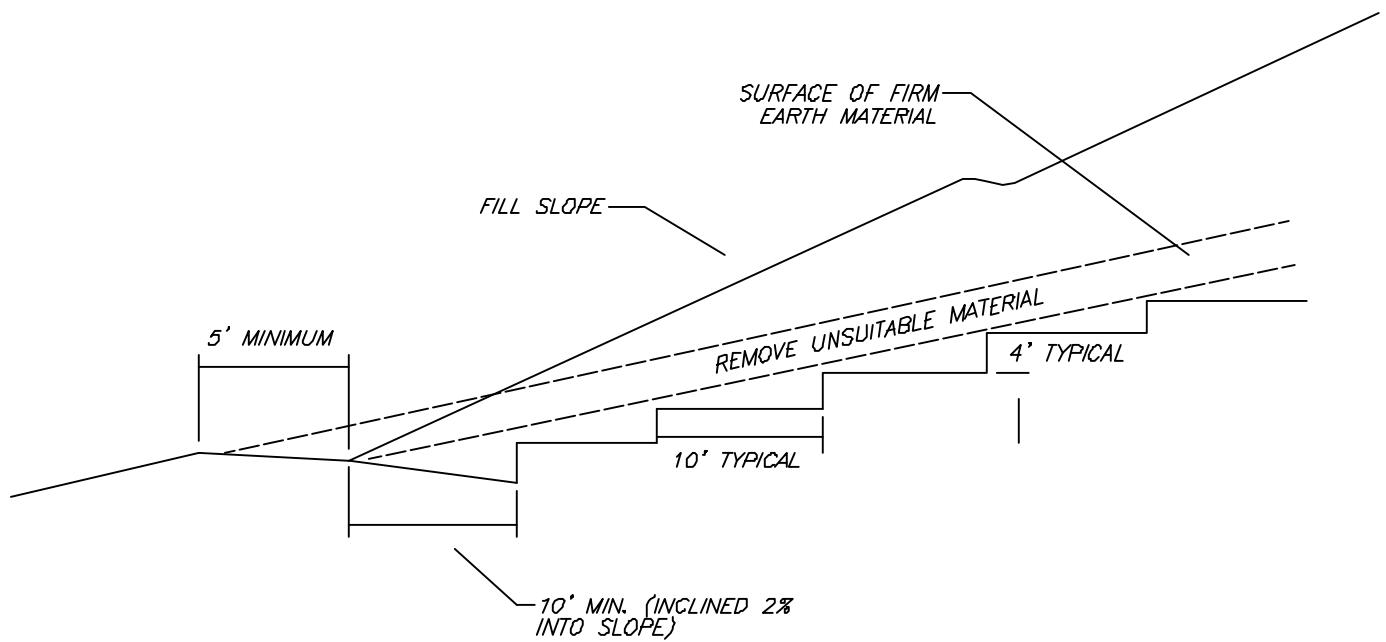

### TRENCH DETAIL

6" MINIMUM OVERLAP

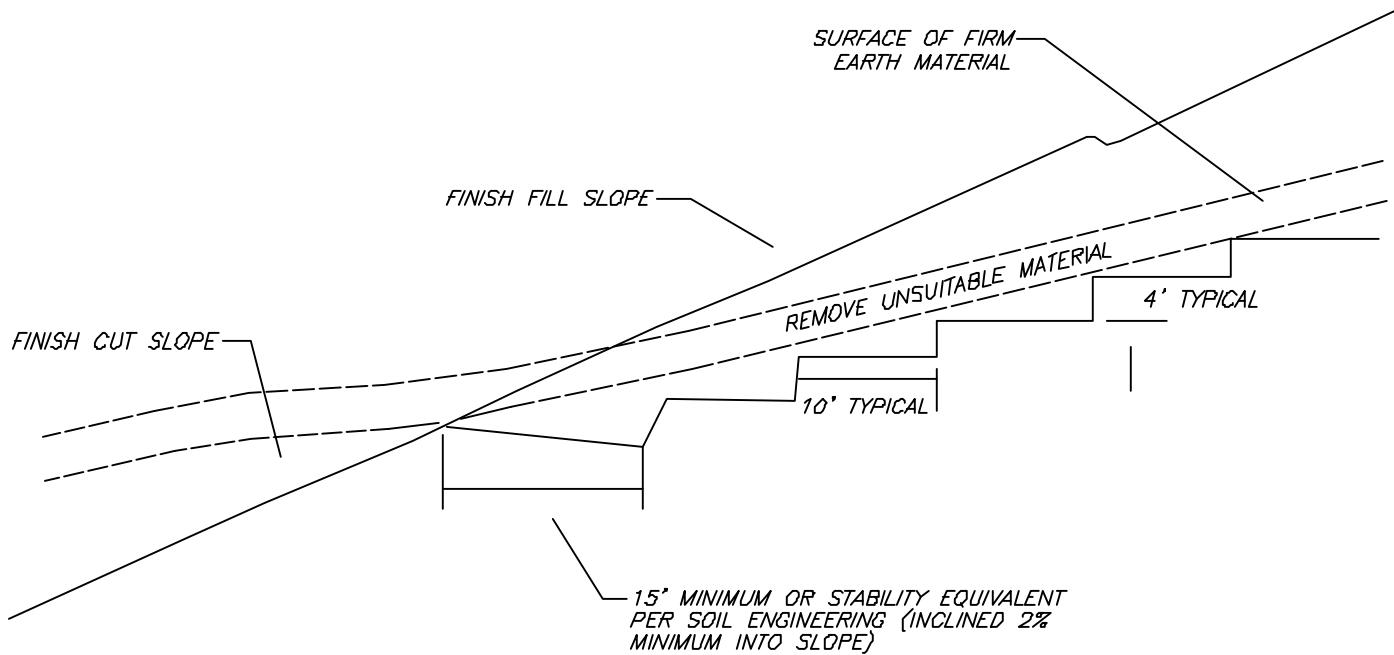
#### OPTIONAL V-DITCH DETAIL

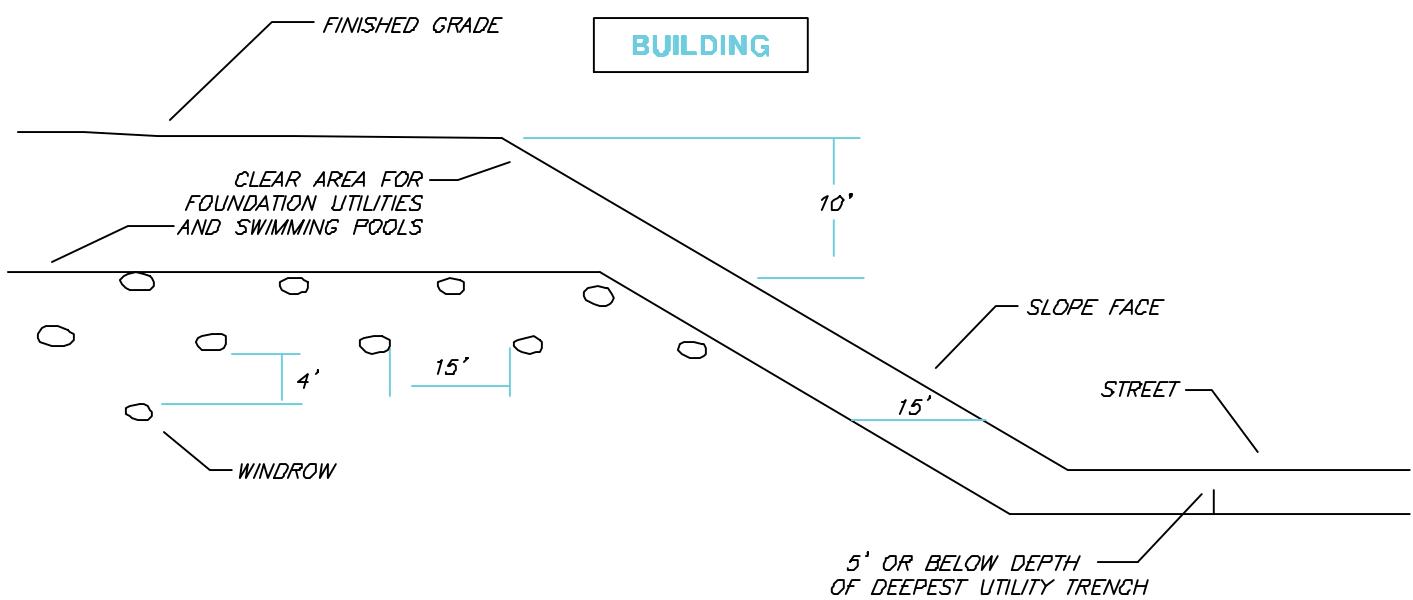
SUPAC 8-P FABRIC OR APPROVED EQUAL



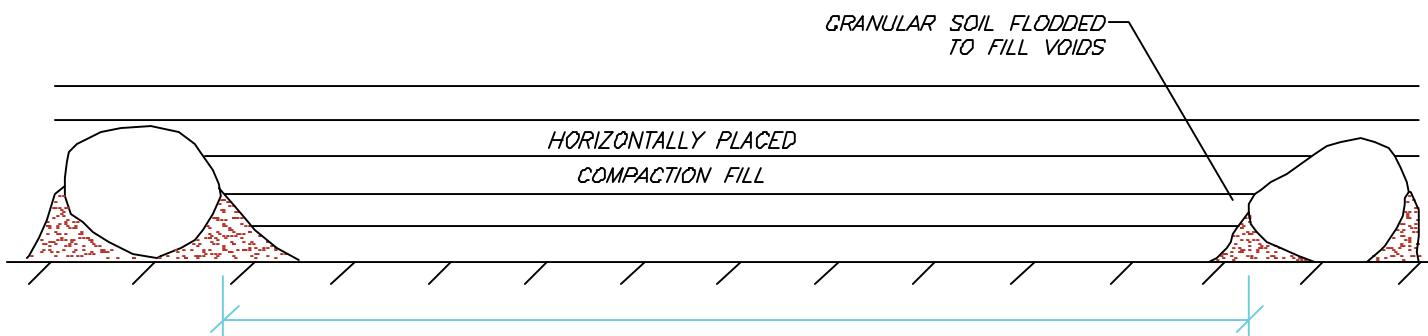

DRAIN MATERIAL TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUAL:

| <u>SIEVE SIZE</u> | <u>PERCENTAGE PASSING</u> |
|-------------------|---------------------------|
| 1-1/2"            | 88-100                    |
| 1"                | 5-40                      |
| 3/4"              | 0-17                      |
| 3/8"              | 0-7                       |
| NO.200            | 0-3                       |

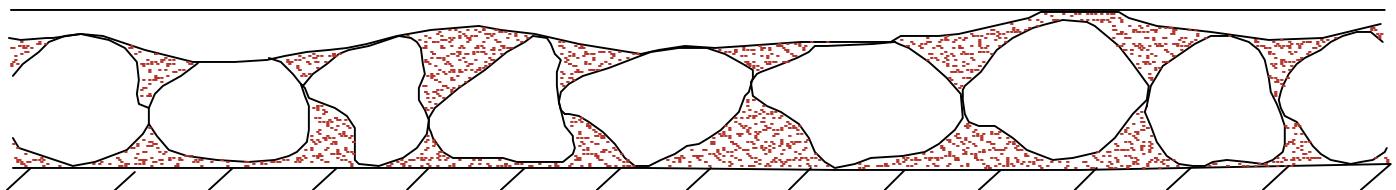

ADD MINIMUM 4" DIAMETER APPROVED PERFORATED PIPE WHEN GRADIENT IS LESS THAN 2%

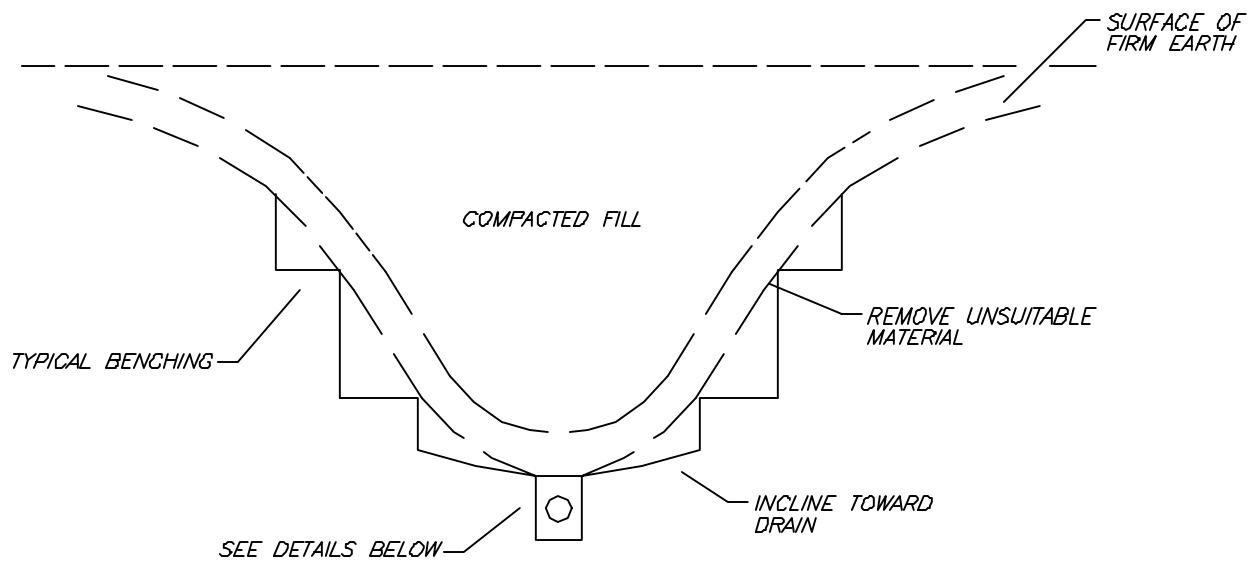

APPROVED PIPE TO BE SCHEDULE 40 POLY-VINYL-CHLORIDE (P.V.C.) OR APPROVED EQUAL. MINIMUM CRUSH STRENGTH 1000 psi.

## BENCHING FILL OVER NATURAL

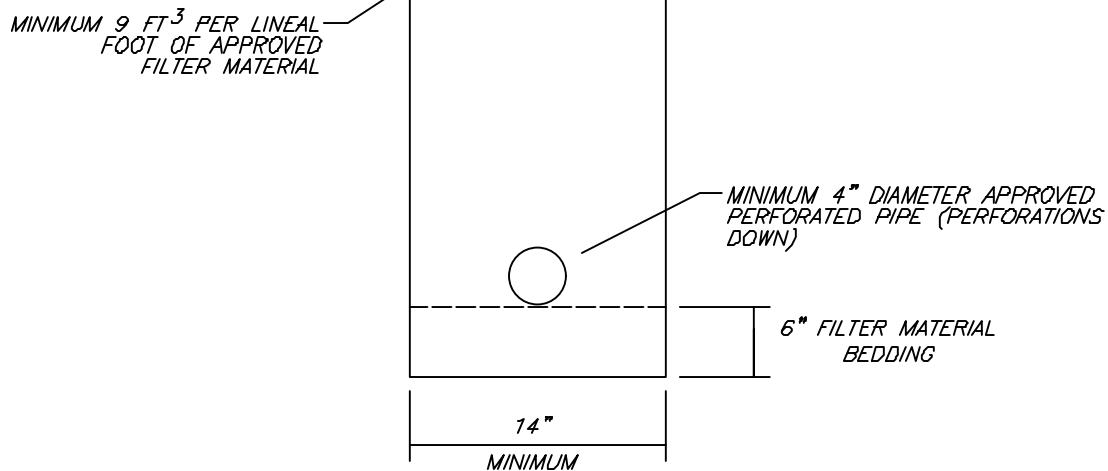



## BENCHING FILL OVER CUT




TYPICAL WINDROW DETAIL (EDGE VIEW)



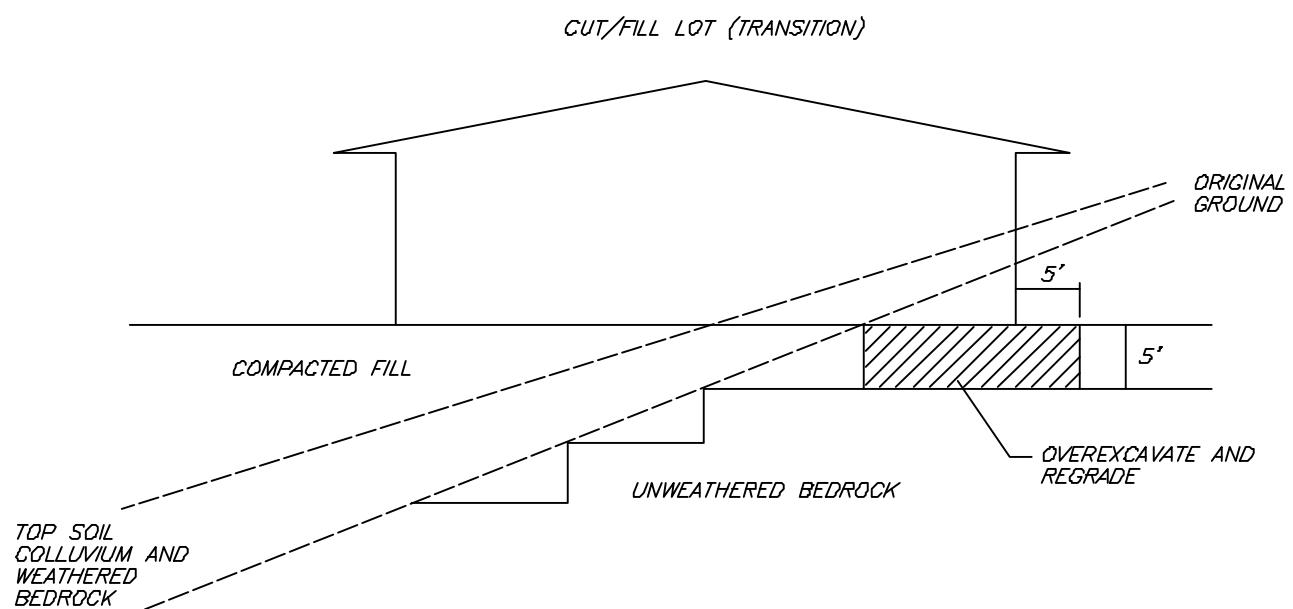
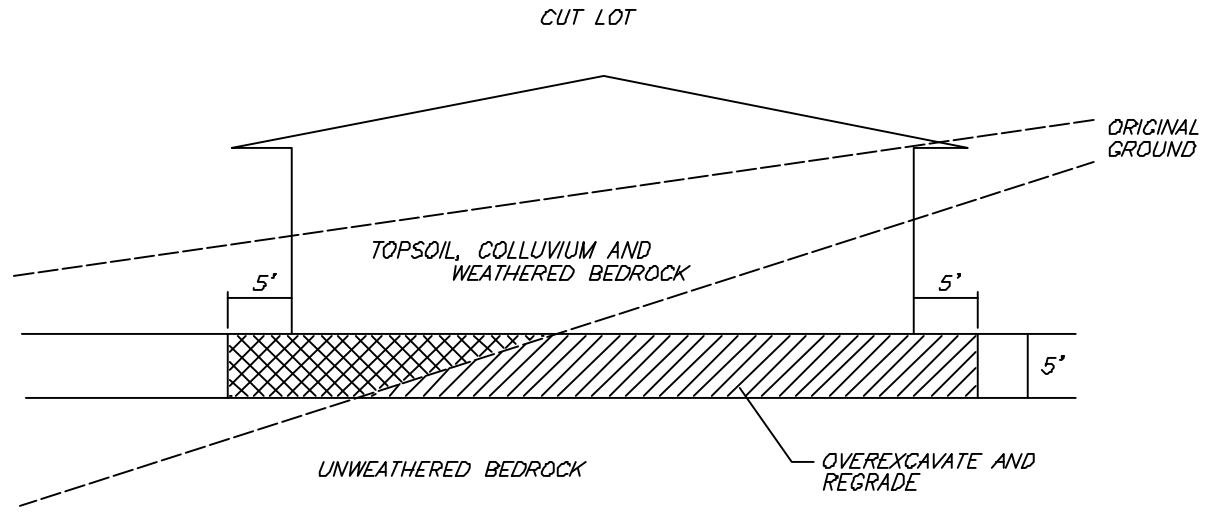

PROFILE VIEW





### TRENCH DETAIL





FILTER MATERIAL TO MEET FOLLOWING SPECIFICATION OR APPROVED EQUAL:

| SIEVE SIZE | PERCENTAGE |
|------------|------------|
| 1"         | 100        |
| 3/4"       | 90-100     |
| 3/8"       | 40-100     |
| NO. 4      | 25-40      |
| NO. 30     | 5-15       |
| NO. 50     | 0-7        |
| NO. 200    | 0-3        |

APPROVED PIPE TO BE SCHEDULE 40 POLY-VINYL-CHLORIDE (P.V.C.) OR APPROVED EQUAL. MINIMUM CRUSH STRENGTH 1000 psi.

PIPE DIAMETER TO MEET THE FOLLOWING CRITERIA, SUBJECT TO FIELD REVIEW BASED ON ACTUAL GEOTECHNICAL CONDITIONS ENCOUNTERED DURING GRADING.

| LENGTH OF RUN | PIPE DIAMETER |
|---------------|---------------|
| UPPER 500'    | 4"            |
| NEXT 1000'    | 6"            |
| > 1500'       | 8"            |



# APPENDIX F

## FIELD INFILTRATION TEST DATA



**GeoMat Testing Laboratories, Inc.**  
Geotechnical Engineering  
Engineering Geology  
Material Testing

**Inland Empire**  
9980 Indiana Ave, Suite 14  
Riverside, California 92503  
Office (951) 688-5400

**Los Angeles**  
5714 W. 96<sup>th</sup> Street  
Los Angeles, California 90045  
Office (310) 337-9400

[geomatlabs.com](http://geomatlabs.com)

# BORING PERCOLATION TEST P-1

|                            |                                   |                                             |           |
|----------------------------|-----------------------------------|---------------------------------------------|-----------|
| Project Name:              | GTS Leasing                       | Depth of Hole (in):                         | 96        |
| Project No.:               | 22160-01                          | Borehole Diameter (in):                     | 8         |
| Project Location:          | APN 0463-231-06, Apple Valley, CA | Test Refill Water Column Height, [d1] (in): | 30        |
| Drilled/Augered by:        | GeoMat                            | Pre-Soaked/Tested by:                       | RM        |
| Drilling/Augering Date(s): | 5/15/2022                         | Pre-Soak/Testing Date(s):                   | 5/21/2022 |

## PRESOAKING:

Pre-soaking shall be used with this procedure. Invert a full 5 gallon bottle (more if necessary) of clear water supported over the hole so that the water flow into the hole holds constant at a level at least 5 times the hole's radius above the gravel at the bottom of the hole. Testing may commence after all of the water has percolated through the test hole or after 15 hours has elapsed since initiating the pre-soak.

## SANDY SOIL DETERMINATION:

Test hole shall be carefully filled with water to a depth equal to at least 5 times the hole's radius ( $H/r > 5$ ) above the gravel at the bottom of the test hole prior to each test interval.

A) In sandy soils, when 2 consecutive measurements show that 6 inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Measurements shall be taken with a precision of 0.25 inches or better. The drop that occurs during the final 10 minutes is used to calculate the percolation rate. Field data must show the two 25 minute readings and the six 10 minute readings.

B) In non-sandy soils, the percolation rate measurement shall be made on the day following initiation of the pre-soak as described in Item #5 above. From a fixed reference point, measure the drop in water level over a 30 minute period for at least 6 hours, refilling after every 30 minute reading. Measurements shall be taken with a precision of 0.25 inches or better. The total depth of hole must be measured at every reading to verify that collapse of the borehole has not occurred. The drop that occurs during the final reading is used to calculate the percolation rate.

| CRITERIA                    | TIME    | TIME INTERVAL (min) | D <sub>0</sub> , INITIAL DEPTH TO WATER (in) | D <sub>f</sub> , FINAL DEPTH TO WATER (in) | ΔH WATER DROP (in) | SANDY SOIL CRITERIA MET? |
|-----------------------------|---------|---------------------|----------------------------------------------|--------------------------------------------|--------------------|--------------------------|
| SANDY SOIL TESTING CRITERIA | 0:00:00 | 0:05:00             | 66                                           | 77                                         | 11                 | YES                      |
|                             | 0:05:00 | 5.00                |                                              |                                            |                    |                          |
|                             | 0:00:00 | 0:05:00             |                                              |                                            |                    |                          |
|                             | 0:05:00 | 5.00                |                                              |                                            |                    |                          |

| TRIAL NO. | TIME    | TIME INTERVAL (min) | D <sub>0</sub> , INITIAL DEPTH TO WATER (in) | D <sub>f</sub> , FINAL DEPTH TO WATER (in) | ΔH WATER DROP (in) | AVERAGE WETTED DEPTH (in) | SURFACE AREA OF SECTION (in <sup>2</sup> ) | VOLUME OF PERCOLATED WATER (in <sup>3</sup> ) | MEASURED INFILTRATION RATE (in/hr) |
|-----------|---------|---------------------|----------------------------------------------|--------------------------------------------|--------------------|---------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------|
| 1         | 0:00:00 | 0:10:00             | 66                                           | 87.00                                      | 21.00              | 19.50                     | 540.35                                     | 1055.57                                       | 11.72                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 2         | 0:00:00 | 0:10:00             | 66                                           | 87.00                                      | 21.00              | 19.50                     | 540.35                                     | 1055.57                                       | 11.72                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 3         | 0:00:00 | 0:10:00             | 66                                           | 87.00                                      | 21.00              | 19.50                     | 540.35                                     | 1055.57                                       | 11.72                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 4         | 0:00:00 | 0:10:00             | 66                                           | 86.00                                      | 20.00              | 20.00                     | 552.92                                     | 1005.31                                       | 10.91                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 5         | 0:00:00 | 0:10:00             | 66                                           | 86.00                                      | 20.00              | 20.00                     | 552.92                                     | 1005.31                                       | 10.91                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 6         | 0:00:00 | 0:10:00             | 66                                           | 86.00                                      | 20.00              | 20.00                     | 552.92                                     | 1005.31                                       | 10.91                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |

MEASURED INFILTRATION RATE\* = **10.91** in/hr

## BORING PERCOLATION TEST P-2

|                            |                                   |                                             |           |
|----------------------------|-----------------------------------|---------------------------------------------|-----------|
| Project Name:              | GTS Leasing                       | Depth of Hole (in):                         | 96        |
| Project No.:               | 22160-01                          | Borehole Diameter (in):                     | 8         |
| Project Location:          | APN 0463-231-06, Apple Valley, CA | Test Refill Water Column Height, [d1] (in): | 30        |
| Drilled/Augered by:        | GeoMat                            | Pre-Soaked/Tested by:                       | RM        |
| Drilling/Augering Date(s): | 5/15/2022                         | Pre-Soak/Testing Date(s):                   | 5/21/2022 |

### PRESOAKING:

Pre-soaking shall be used with this procedure. Invert a full 5 gallon bottle (more if necessary) of clear water supported over the hole so that the water flow into the hole holds constant at a level at least 5 times the hole's radius above the gravel at the bottom of the hole. Testing may commence after all of the water has percolated through the test hole or after 15 hours has elapsed since initiating the pre-soak.

#### SANDY SOIL DETERMINATION:

Test hole shall be carefully filled with water to a depth equal to at least 5 times the hole's radius ( $H/r > 5$ ) above the gravel at the bottom of the test hole prior to each test interval.

A) In sandy soils, when 2 consecutive measurements show that 6 inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Measurements shall be taken with a precision of 0.25 inches or better. The drop that occurs during the final 10 minutes is used to calculate the percolation rate. Field data must show the two 25 minute readings and the six 10 minute readings.

B) In non-sandy soils, the percolation rate measurement shall be made on the day following initiation of the pre-soak as described in Item #5 above. From a fixed reference point, measure the drop in water level over a 30 minute period for at least 6 hours, refilling after every 30 minute reading. Measurements shall be taken with a precision of 0.25 inches or better. The total depth of hole must be measured at every reading to verify that collapse of the borehole has not occurred. The drop that occurs during the final reading is used to calculate the percolation rate.

| SANDY SOIL PERCOLATION TEST |         |                     |                                              |                                            |                    |                          |
|-----------------------------|---------|---------------------|----------------------------------------------|--------------------------------------------|--------------------|--------------------------|
| CRITERIA                    | TIME    | TIME INTERVAL (min) | D <sub>0</sub> , INITIAL DEPTH TO WATER (in) | D <sub>f</sub> , FINAL DEPTH TO WATER (in) | ΔH WATER DROP (in) | SANDY SOIL CRITERIA MET? |
| SANDY SOIL TESTING CRITERIA | 0:00:00 | 0:05:00             | 66                                           | 76.5                                       | 10.5               | YES                      |
|                             | 0:05:00 | 5.00                |                                              |                                            |                    |                          |
|                             | 0:00:00 | 0:05:00             | 66                                           | 76                                         | 10                 | YES                      |
|                             | 0:05:00 | 5.00                |                                              |                                            |                    |                          |

MEASURED INFILTRATION RATE\* = **9.39** in/hr

# BORING PERCOLATION TEST P-3

|                            |                                   |                                             |           |
|----------------------------|-----------------------------------|---------------------------------------------|-----------|
| Project Name:              | GTS Leasing                       | Depth of Hole (in):                         | 96        |
| Project No.:               | 22160-01                          | Borehole Diameter (in):                     | 8         |
| Project Location:          | APN 0463-231-06, Apple Valley, CA | Test Refill Water Column Height, [d1] (in): | 30        |
| Drilled/Augered by:        | GeoMat                            | Pre-Soaked/Tested by:                       | RM        |
| Drilling/Augering Date(s): | 5/15/2022                         | Pre-Soak/Testing Date(s):                   | 5/21/2022 |

## PRESOAKING:

Pre-soaking shall be used with this procedure. Invert a full 5 gallon bottle (more if necessary) of clear water supported over the hole so that the water flow into the hole holds constant at a level at least 5 times the hole's radius above the gravel at the bottom of the hole. Testing may commence after all of the water has percolated through the test hole or after 15 hours has elapsed since initiating the pre-soak.

## SANDY SOIL DETERMINATION:

Test hole shall be carefully filled with water to a depth equal to at least 5 times the hole's radius ( $H/r > 5$ ) above the gravel at the bottom of the test hole prior to each test interval.

A) In sandy soils, when 2 consecutive measurements show that 6 inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Measurements shall be taken with a precision of 0.25 inches or better. The drop that occurs during the final 10 minutes is used to calculate the percolation rate. Field data must show the two 25 minute readings and the six 10 minute readings.

B) In non-sandy soils, the percolation rate measurement shall be made on the day following initiation of the pre-soak as described in Item #5 above. From a fixed reference point, measure the drop in water level over a 30 minute period for at least 6 hours, refilling after every 30 minute reading. Measurements shall be taken with a precision of 0.25 inches or better. The total depth of hole must be measured at every reading to verify that collapse of the borehole has not occurred. The drop that occurs during the final reading is used to calculate the percolation rate.

| CRITERIA                    | TIME    | TIME INTERVAL (min) | D <sub>0</sub> , INITIAL DEPTH TO WATER (in) | D <sub>f</sub> , FINAL DEPTH TO WATER (in) | ΔH WATER DROP (in) | SANDY SOIL CRITERIA MET? |
|-----------------------------|---------|---------------------|----------------------------------------------|--------------------------------------------|--------------------|--------------------------|
| SANDY SOIL TESTING CRITERIA | 0:00:00 | 0:05:00             | 66                                           | 77                                         | 11                 | YES                      |
|                             | 0:05:00 | 5.00                |                                              |                                            |                    |                          |
|                             | 0:00:00 | 0:05:00             |                                              |                                            |                    |                          |
|                             | 0:05:00 | 5.00                |                                              |                                            |                    |                          |

| TRIAL NO. | TIME    | TIME INTERVAL (min) | D <sub>0</sub> , INITIAL DEPTH TO WATER (in) | D <sub>f</sub> , FINAL DEPTH TO WATER (in) | ΔH WATER DROP (in) | AVERAGE WETTED DEPTH (in) | SURFACE AREA OF SECTION (in <sup>2</sup> ) | VOLUME OF PERCOLATED WATER (in <sup>3</sup> ) | MEASURED INFILTRATION RATE (in/hr) |
|-----------|---------|---------------------|----------------------------------------------|--------------------------------------------|--------------------|---------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------|
| 1         | 0:00:00 | 0:10:00             | 66                                           | 86.00                                      | 20.00              | 20.00                     | 552.92                                     | 1005.31                                       | 10.91                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 2         | 0:00:00 | 0:10:00             | 66                                           | 85.75                                      | 19.75              | 20.13                     | 556.06                                     | 992.74                                        | 10.71                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 3         | 0:00:00 | 0:10:00             | 66                                           | 85.75                                      | 19.75              | 20.13                     | 556.06                                     | 992.74                                        | 10.71                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 4         | 0:00:00 | 0:10:00             | 66                                           | 85.63                                      | 19.63              | 20.19                     | 557.63                                     | 986.46                                        | 10.61                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 5         | 0:00:00 | 0:10:00             | 66                                           | 85.50                                      | 19.50              | 20.25                     | 559.20                                     | 980.18                                        | 10.52                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 6         | 0:00:00 | 0:10:00             | 66                                           | 85.50                                      | 19.50              | 20.25                     | 559.20                                     | 980.18                                        | 10.52                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |

MEASURED INFILTRATION RATE\* = **10.52** in/hr

# BORING PERCOLATION TEST P-4

|                            |                                   |                                             |           |
|----------------------------|-----------------------------------|---------------------------------------------|-----------|
| Project Name:              | GTS Leasing                       | Depth of Hole (in):                         | 96        |
| Project No.:               | 22160-01                          | Borehole Diameter (in):                     | 8         |
| Project Location:          | APN 0463-231-06, Apple Valley, CA | Test Refill Water Column Height, [d1] (in): | 30        |
| Drilled/Augered by:        | GeoMat                            | Pre-Soaked/Tested by:                       | RM        |
| Drilling/Augering Date(s): | 5/15/2022                         | Pre-Soak/Testing Date(s):                   | 5/21/2022 |

## PRESOAKING:

Pre-soaking shall be used with this procedure. Invert a full 5 gallon bottle (more if necessary) of clear water supported over the hole so that the water flow into the hole holds constant at a level at least 5 times the hole's radius above the gravel at the bottom of the hole. Testing may commence after all of the water has percolated through the test hole or after 15 hours has elapsed since initiating the pre-soak.

## SANDY SOIL DETERMINATION:

Test hole shall be carefully filled with water to a depth equal to at least 5 times the hole's radius ( $H/r > 5$ ) above the gravel at the bottom of the test hole prior to each test interval.

A) In sandy soils, when 2 consecutive measurements show that 6 inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Measurements shall be taken with a precision of 0.25 inches or better. The drop that occurs during the final 10 minutes is used to calculate the percolation rate. Field data must show the two 25 minute readings and the six 10 minute readings.

B) In non-sandy soils, the percolation rate measurement shall be made on the day following initiation of the pre-soak as described in Item #5 above. From a fixed reference point, measure the drop in water level over a 30 minute period for at least 6 hours, refilling after every 30 minute reading. Measurements shall be taken with a precision of 0.25 inches or better. The total depth of hole must be measured at every reading to verify that collapse of the borehole has not occurred. The drop that occurs during the final reading is used to calculate the percolation rate.

| CRITERIA                    | TIME    | TIME INTERVAL (min) | D <sub>0</sub> , INITIAL DEPTH TO WATER (in) | D <sub>f</sub> , FINAL DEPTH TO WATER (in) | ΔH WATER DROP (in) | SANDY SOIL CRITERIA MET? |
|-----------------------------|---------|---------------------|----------------------------------------------|--------------------------------------------|--------------------|--------------------------|
| SANDY SOIL TESTING CRITERIA | 0:00:00 | 0:05:00             | 66                                           | 76.75                                      | 10.75              | YES                      |
|                             | 0:05:00 | 5.00                |                                              |                                            |                    |                          |
|                             | 0:00:00 | 0:05:00             |                                              |                                            |                    |                          |
|                             | 0:05:00 | 5.00                |                                              |                                            |                    |                          |

| TRIAL NO. | TIME    | TIME INTERVAL (min) | D <sub>0</sub> , INITIAL DEPTH TO WATER (in) | D <sub>f</sub> , FINAL DEPTH TO WATER (in) | ΔH WATER DROP (in) | AVERAGE WETTED DEPTH (in) | SURFACE AREA OF SECTION (in <sup>2</sup> ) | VOLUME OF PERCOLATED WATER (in <sup>3</sup> ) | MEASURED INFILTRATION RATE (in/hr) |
|-----------|---------|---------------------|----------------------------------------------|--------------------------------------------|--------------------|---------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------|
| 1         | 0:00:00 | 0:10:00             | 66                                           | 86.75                                      | 20.75              | 19.63                     | 543.50                                     | 1043.01                                       | 11.51                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 2         | 0:00:00 | 0:10:00             | 66                                           | 86.63                                      | 20.63              | 19.69                     | 545.07                                     | 1036.72                                       | 11.41                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 3         | 0:00:00 | 0:10:00             | 66                                           | 86.75                                      | 20.75              | 19.63                     | 543.50                                     | 1043.01                                       | 11.51                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 4         | 0:00:00 | 0:10:00             | 66                                           | 86.50                                      | 20.50              | 19.75                     | 546.64                                     | 1030.44                                       | 11.31                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 5         | 0:00:00 | 0:10:00             | 66                                           | 86.50                                      | 20.50              | 19.75                     | 546.64                                     | 1030.44                                       | 11.31                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
| 6         | 0:00:00 | 0:10:00             | 66                                           | 86.50                                      | 20.50              | 19.75                     | 546.64                                     | 1030.44                                       | 11.31                              |
|           | 0:10:00 | 10.00               |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |
|           |         |                     |                                              |                                            |                    |                           |                                            |                                               |                                    |

MEASURED INFILTRATION RATE\* = **11.31** in/hr